Dynamics of appetite-mediated gene expression in daidzein-fed female rats in the meal-feeding method.

Bioscience, biotechnology, and biochemistry (2015-05-09)
Mina Fujitani, Takafumi Mizushige, Keshab Bhattarai, Asami Iwahara, Ryojiro Aida, Tomomi Segawa, Taro Kishida
RESUMEN

We previously found that daidzein decreased food intake in female rats. The present study aimed to elucidate the relationship between dynamics of appetite-mediated neuropeptides and the anorectic effect of daidzein. We examined appetite-mediated gene expression in the hypothalamus and small intestine during the 3 meals per day feeding method. Daidzein had an anorectic effect specifically at the second feeding. Neuropeptide-Y (NPY) and galanin mRNA levels in the hypothalamus were significantly higher after feeding in the control but not in the daidzein group, suggesting that daidzein attenuated the postprandial increase in NPY and galanin expression. The daidzein group had higher corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamus after feeding, and increased cholelcystokinin (CCK) mRNA levels in the small intestine, suggesting that CCK is involved in the hypothalamic regulation of this anorectic effect. Therefore, daidzein may induce anorexia by suppressing expression of NPY and galanin and increasing expression of CRH in the hypothalamus.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
L-Cystine, ≥98% (TLC), crystalline
Sigma-Aldrich
L-Cystine, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Cystine, ≥99.7% (TLC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
SAFC
L-Cystine
SAFC
L-Cystine
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
L-Cystine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.5%