Merck
  • Home
  • Search Results
  • Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover.

Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover.

PLoS biology (2015-11-07)
Dorottya Kalapis, Ana R Bezerra, Zoltán Farkas, Peter Horvath, Zoltán Bódi, Andreea Daraba, Béla Szamecz, Ivo Gut, Mónica Bayes, Manuel A S Santos, Csaba Pál
ABSTRACT

Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome-mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that translational fidelity and the ubiquitin-proteasome system are functionally linked to each other and may, therefore, co-evolve in nature.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
3-Methylbutanol, BioReagent, for molecular biology, ≥98.5%
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Isoamyl alcohol, ≥98%, FG
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Isoamyl alcohol, natural, ≥98%, FG
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
3-Methylbutanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
D-Serine, ≥98% (TLC)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Magnesium sulfate, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Magnesium sulfate, anhydrous, reagent grade, ≥97%
Sigma-Aldrich
Magnesium sulfate, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Glycerol, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E422, anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%