Skip to Content
Merck
  • Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

Biomaterials (2014-12-30)
Craig S Schneider, Jimena G Perez, Emily Cheng, Clark Zhang, Panagiotis Mastorakos, Justin Hanes, Jeffrey A Winkles, Graeme F Woodworth, Anthony J Kim
ABSTRACT

A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, BioXtra
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, crystalline
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Supelco
1,2-Dichloroethane, analytical standard
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, purum, ≥98.0% (AT)
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, ≥99.0% (AT)
Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, commercial grade, powder
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
1,2-Dichloroethane, AR, ≥99.5%
Sigma-Aldrich
1,2-Dichloroethane, LR, ≥99%
Sigma-Aldrich
Phosphoric acid, AR, 88-93%
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Phosphoric acid, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Phosphoric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
1,2-Dichloroethane, ACS reagent, ≥99.0%
Sigma-Aldrich
Phosphoric acid, LR, 88-93%