Skip to Content
Merck
  • Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution.

Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution.

Journal of colloid and interface science (2020-11-10)
Valentina Trovato, Eti Teblum, Yulia Kostikov, Andrea Pedrana, Valerio Re, Gilbert Daniel Nessim, Giuseppe Rosace
ABSTRACT

From the end of the twentieth century, the growing interest in a new generation of wearable electronics with attractive application for military, medical and smart textiles fields has led to a wide investigation of chemical finishes for the production of electronic textiles (e-textiles). Herein, a novel method to turn insulating cotton fabrics in electrically conductive by the deposition of three-dimensional hierarchical vertically aligned carbon nanotubes (VACNT) is proposed. Two VACNT samples with different length were synthesized and then dispersed in 4-dodecylbenzenesulfonic acid combined with silica-based sol-gel precursors. The dispersed VACNT were separately compounded with a polyurethane thickener to obtain homogeneous spreadable pastes, finally coated onto cotton surfaces by the "knife-over-roll" technique. Shorter VACNT-based composite showed the best electrical conductivity, with a sheet resistance value less than 4.0 · 104 ± 6.7 · 103 Ω/sq. As demonstrated, developed e-textiles are suitable for application as humidity sensing materials in wearable smart textiles by exhibiting adequate response time for end-users and repeatability at several exposure cycles, still maintaining excellent flexibility. The proposed environmentally-friendly and cost-effective method can be easily widened to the scalable production of CNT-containing conductive flexible coatings, providing additional support to the development of real integration between electronics and textiles.