Skip to Content
Merck
  • Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus.

Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus.

Structure (London, England : 1993) (2008-09-13)
Vadim Cherezov, Nicole Höfer, Doletha M E Szebenyi, Olga Kolaj, J Gerard Wall, Richard Gillilan, Vasundara Srinivasan, Christopher P Jaroniec, Martin Caffrey
ABSTRACT

The crystal structures of the cytoplasmic domain of the putative zinc transporter CzrB in the apo and zinc-bound forms reported herein are consistent with the protein functioning in vivo as a homodimer. NMR, X-ray scattering, and size-exclusion chromatography provide support for dimer formation. Full-length variants of CzrB in the apo and zinc-loaded states were generated by homology modeling with the Zn2+/H+ antiporter YiiP. The model suggests a way in which zinc binding to the cytoplasmic fragment creates a docking site to which a metallochaperone can bind for delivery and transport of its zinc cargo. Because the cytoplasmic domain may exist in the cell as an independent, soluble protein, a proposal is advanced that it functions as a metallochaperone and that it regulates the zinc-transporting activity of the full-length protein. The latter requires that zinc binding becomes uncoupled from the creation of a metallochaperone-docking site on CzrB.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Hyaluronidase from bovine testes, Type I-S, lyophilized powder, 400-1000 units/mg solid
Sigma-Aldrich
Hyaluronidase from bovine testes, Type VI-S, lyophilized powder, 3,000-15,000 units/mg solid