Skip to Content
Merck
  • Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival.

Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival.

Cell death & disease (2014-11-14)
G J Eaton, Q-S Zhang, C Diallo, A Matsuzawa, H Ichijo, M J Steinbeck, T A Freeman
ABSTRACT

Endochondral ossification is the result of chondrocyte differentiation, hypertrophy, death and replacement by bone. The careful timing and progression of this process is important for normal skeletal bone growth and development, as well as fracture repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK), which is activated by reactive oxygen species and other cellular stress events. Activation of ASK1 initiates a signaling cascade known to regulate diverse cellular events including cytokine and growth factor signaling, cell cycle regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice display alterations in normal growth plate morphology, which include a shorter proliferative zone and a lengthened hypertrophic zone. These changes in growth plate dynamics result in accelerated long bone mineralization and an increased formation of trabecular bone, which can be attributed to an increased resistance of terminally differentiated chondrocytes to undergo cell death. Interestingly, under normal cell culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show no differences in either MAPK signaling or osteogenic or chondrogenic differentiation when compared with wild-type (WT) MEFs. However, when cultured with stress activators, H2O2 or staurosporine, the KO cells show enhanced survival, an associated decrease in the activation of proteins involved in death signaling pathways and a reduction in markers of terminal differentiation. Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO mice endochondral bone formation was increased in an ectopic ossification model. These findings highlight a previously unrealized role for ASK1 in regulating endochondral bone formation. Inhibition of ASK1 has clinical potential to treat fractures or to slow osteoarthritic progression by enhancing chondrocyte survival and slowing hypertrophy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Safranin O, Dye content ≥85 %
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Hematoxylin, certified by the BSC
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Safranin O, suitable for microscopy
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol