Skip to Content
Merck
  • Vanadium(IV) and copper(II) complexes of salicylaldimines and aromatic heterocycles: Cytotoxicity, DNA binding and DNA cleavage properties.

Vanadium(IV) and copper(II) complexes of salicylaldimines and aromatic heterocycles: Cytotoxicity, DNA binding and DNA cleavage properties.

Journal of inorganic biochemistry (2015-04-11)
Isabel Correia, Somnath Roy, Cristina P Matos, Sladjana Borovic, Nataliya Butenko, Isabel Cavaco, Fernanda Marques, Julia Lorenzo, Alejandra Rodríguez, Virtudes Moreno, João Costa Pessoa
ABSTRACT

Five copper(II) complexes, [Cu(sal-Gly)(bipy)](1), [Cu(sal-Gly)(phen)] (2), [Cu(sal-l-Ala)(phen)] (3), [Cu(sal-D-Ala)(phen)] (4), [Cu(sal-l-Phe)(phen)] (5) and five oxidovanadium(IV) complexes, [V(IV)O(sal-Gly)(bipy)] (6), [V(IV)O(sal-Gly)(phen)] (7), [V(IV)O(sal-l-Phe)(H2O)] (8), [V(IV)O(sal-l-Phe)(bipy)] (9), [V(IV)O(sal-l-Phe)(phen)] (10) (sal=salicylaldehyde, bipy=2,2'-bipyridine, phen=1,10-phenanthroline) were synthesized and characterized, and their interaction with DNA was evaluated by different techniques: gel electrophoresis, fluorescence, UV-visible and circular dichroism spectroscopy. The complexes interact with calf-thymus DNA and efficiently cleave plasmid DNA in the absence (only 2 and 5) and/or presence of additives. The cleavage ability is concentration-dependent as well as metal and ligand-dependent. Moreover, DNA binding experiments show that the phen-containing Cu(II) and V(IV)O compounds display stronger DNA interaction ability than the corresponding bipy analogues. The complexes present cytotoxic activity against human ovarian (A2780) and breast (MCF7) carcinoma cells. Cell-growth inhibition (IC50) of compounds 1, 2 and 5 in human promyelocytic leukemia (HL60) and human cervical cancer (HeLa) cells were also determined. The copper complexes show much higher cytotoxic activity than the corresponding vanadium complexes and the reference drug cisplatin (except for the sal-Gly complexes); namely, the phenanthroline copper complexes 2-5 are ca. 10-fold more cytotoxic than cisplatin and more cytotoxic than their bipyridine analogues.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethidium bromide solution, suitable for fluorescence, ~1% in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Potassium chloride, Molecular Biology, ≥99.0%
Sigma-Aldrich
1,10-Phenanthroline, ≥99%
Sigma-Aldrich
Acetylacetone, Wacker Chemie AG, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
2,2′-Bipyridyl, ReagentPlus®, ≥99%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Bromophenol Blue, titration: suitable
Sigma-Aldrich
Ethidium bromide, BioReagent, Molecular Biology, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Bromophenol Blue, ACS reagent
Sigma-Aldrich
Glycerol, FCC, FG