Skip to Content
Merck
  • Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats.

Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats.

Molecular medicine reports (2014-11-21)
Kun Huang, Xiaowen Kang, Xinyan Wang, Shijie Wu, Jinling Xiao, Zhaoguo Li, Xiaomei Wu, Wei Zhang
ABSTRACT

Pulmonary fibrosis is an irreversible chronic progressive fibroproliferative lung disease, which usually has a poor prognosis. Previous studies have confirmed that the transplantation of bone marrow mesenchymal stem cells (MSCs) significantly reduces lung damage in a number of animal models. However, the underlying mechanism involved in this process remains to be elucidated. In the present study, a bleomycin (BLM)‑induced female Wister rat model of fibrosis was established. At 0 or 7 days following BLM administration, rats were injected into the tail vein with 5‑bromo‑2‑deoxyuridine‑labeled MSCs extracted from male Wistar rats. The lung tissue of the rats injected with MSCs expressed the sex‑determining region Y gene. The level surfactant protein C (SP‑C), a marker for type II alveolar epithelial cells (AEC II), was higher in the group injected with MSCs at day 0 than that in the group injected at day 7. Furthermore, SP‑C mRNA, but not aquaporin 5 mRNA, a marker for type I alveolar epithelial cells, was expressed in fresh bone marrow aspirates and the fifth generation of cultured MSCs. In addition, superoxide dismutase activity and total antioxidative capability, specific indicators of oxidative stress, were significantly increased in the lung tissue of the MSC‑transplanted rats (P<0.05). In conclusion, to alleviate pulmonary fibrosis, exogenous MSCs may be transplanted into damaged lung tissue where they differentiate into AEC II and exert their effect, at least in part, through blocking oxidative stress.

MATERIALS
Product Number
Brand
Product Description

Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Phenol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Chloral hydrate, crystallized, ≥98.0% (T)
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Phenol, BioUltra, Molecular Biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, Molecular Biology
Sigma-Aldrich
Phenol solution, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, BioReagent, Molecular Biology
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Chloral hydrate
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Hematoxylin, certified by the BSC
Sigma-Aldrich
Phenol, Molecular Biology
Sigma-Aldrich
Chloral hydrate, ≥99%
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Supelco
Phenol, PESTANAL®, analytical standard
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol, ACS reagent, ≥99.0%
USP
Phenol, United States Pharmacopeia (USP) Reference Standard