Skip to Content
Merck
  • Effects of progesterone and norethindrone on female fathead minnow (Pimephales promelas) steroidogenesis.

Effects of progesterone and norethindrone on female fathead minnow (Pimephales promelas) steroidogenesis.

Environmental toxicology and chemistry (2014-12-04)
Lene H Petersen, David Hala, Dennis Carty, Mark Cantu, Dalma Martinović, Duane B Huggett
ABSTRACT

As knowledge of contaminants capable of adversely modulating endocrine functions increases, attention is focused on the effects of synthetic progestins as environmental endocrine disrupters. In the present study, effects of exposure to a synthetic progestin (norethindrone, 168 ± 7.5 ng/L) and endogenous progestogen (progesterone, 34 ± 4.1 ng/L) on steroidogenesis in adult female fathead minnows were examined. In vivo exposure to either compound lowered expression (nonsignificant) of luteinizing hormone (LHβ) levels in the brain along with significantly down-regulating the beta isoform of membrane progesterone receptor (mPRβ) in ovary tissue. The correspondence between lowered LHβ levels in the brain and mPRβ in the ovary is suggestive of a possible functional association as positive correlations between LHβ and mPR levels have been demonstrated in other fish species. In vitro exposure of ovary tissue to progesterone resulted in significantly elevated progestogen (pregnenolone, 17α-hydroxyprogesterone, and 17α,20β-dihydroxypregnenone) and androgen (testosterone) production. Whereas in vitro exposure to norethindrone did not significantly impact steroid hormone production but showed decreased testosterone production relative to solvent control (however this was not significant). Overall, this study showed that exposure to a natural progestogen (progesterone) and synthetic progestin (norethindrone), was capable of modulating LHβ (in brain) and mPRβ expression (in ovary).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Supelco
Hexane, analytical standard
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethyl acetate, analytical standard
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Ethyl acetate, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Ethyl acetate, biotech. grade, ≥99.8%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Supelco
Ethyl Acetate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium bicarbonate, tested according to Ph. Eur.
Sigma-Aldrich
Ethyl 3-aminobenzoate methanesulfonate, 98%
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture