Merck
  • Home
  • Search Results
  • Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol.

Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol.

Journal of proteomics (2015-04-02)
Oliver Simon, Janosch Klebensberger, Björn Mükschel, Iris Klaiber, Nadja Graf, Josef Altenbuchner, Armin Huber, Bernhard Hauer, Jens Pfannstiel
ABSTRACT

To increase the efficiency of biocatalysts a thorough understanding of the molecular response of the biocatalyst to precursors, products and environmental conditions applied in bioconversions is essential. Here we performed a comprehensive proteome and phospholipid analysis to characterize the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. Using complementary quantitative proteomics approaches we were able to identify and quantify 1467 proteins, corresponding to 28% of the total KT2440 proteome. 256 proteins were altered in abundance in response to n-butanol. The proteome response entailed an increased abundance of enzymes involved in n-butanol degradation including quinoprotein alcohol dehydrogenases, aldehyde dehydrogenases and enzymes of fatty acid beta oxidation. From these results we were able to construct a pathway for the metabolism of n-butanol in P. putida. The initial oxidation of n-butanol is catalyzed by at least two quinoprotein ethanol dehydrogenases (PedE and PedH). Growth of mutants lacking PedE and PedH on n-butanol was significantly impaired, but not completely inhibited, suggesting that additional alcohol dehydrogenases can at least partially complement their function in KT2440. Furthermore, phospholipid profiling revealed a significantly increased abundance of lyso-phospholipids in response to n-butanol, indicating a rearrangement of the lipid bilayer. n-butanol is an important bulk chemical and a promising alternative to gasoline as a transportation fuel. Due to environmental concerns as well as increasing energy prices there is a growing interest in sustainable and cost-effective biotechnological production processes for the production of bulk chemicals and transportation fuels from renewable resources. n-butanol fermentation is well established in Clostridiae, but the efficiency of n-butanol production is mainly limited by its toxicity. Therefore bacterial strains with higher intrinsic tolerance to n-butanol have to be selected as hosts for n-butanol production. Pseudomonas bacteria are metabolically very versatile and exhibit a high intrinsic tolerance to organic solvents making them suitable candidates for bioconversion processes. A prerequisite for a potential production of n-butanol in Pseudomonas bacteria is a thorough understanding of the molecular adaption processes caused by n-butanol and the identification of enzymes involved in n-butanol metabolization. This work describes the impact of n-butanol on the proteome and the phospholipid composition of the reference strain P. putida KT2440. The high proteome coverage of our proteomics survey allowed us to reconstruct the degradation pathway of n-butanol and to monitor the changes in the energy metabolism of KT2440 induced by n-butanol. Key enzymes involved in n-butanol degradation identified in study will be interesting targets for optimization of n-butanol production in Pseudomonads. The present work and the identification of key enzymes involved in butanol metabolism may serve as a fundament to develop new or improve existing strategies for the biotechnological production of the next-generation biofuel n-butanol in Pseudomonads.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate, 98%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Urea, BioUltra, for molecular biology, ≥99% (T)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%