Merck

Ionic liquid versus prodrug strategy to address formulation challenges.

Pharmaceutical research (2014-12-24)
Anja Balk, Toni Widmer, Johannes Wiest, Heike Bruhn, Jens-Christoph Rybak, Philipp Matthes, Klaus Müller-Buschbaum, Anastasios Sakalis, Tessa Lühmann, Jörg Berghausen, Ulrike Holzgrabe, Bruno Galli, Lorenz Meinel
ABSTRACT

A poorly water soluble acidic active pharmaceutical ingredient (API) was transformed into an ionic liquid (IL) aiming at faster and higher oral availability in comparison to a prodrug. API preparations were characterized in solid state by single crystal and powder diffraction, NMR, DSC, IR and in solution by NMR and ESI-MS. Dissolution and precipitation kinetics were detailed as was the role of the counterion on API supersaturation. Transepithelial API transport through Caco-2 monolayers and counterion cytotoxicity were assessed. The mechanism leading to a 700 fold faster dissolution rate and longer duration of API supersaturation of the ionic liquid in comparison to the free acid was deciphered. Transepithelial transport was about three times higher for the IL in comparison to the prodrug when substances were applied as suspensions with the higher solubility of the IL outpacing the higher permeability of the prodrug. The counterion was nontoxic with IC50 values in the upper μM / lower mM range in cell lines of hepatic and renal origin as well as in macrophages. The IL approach was instrumental for tuning physico-chemical API properties, while avoiding the inherent need for structural changes as required for prodrugs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Sodium bicarbonate, Hybri-Max, powder, suitable for hybridoma, ≥99.5%
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Streptomycin sulfate salt, suitable for plant cell culture
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Streptomycin sulfate salt, powder
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.5 atom % D
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.9 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.9 atom % D, contains 1 % (v/v) TMS
Sigma-Aldrich
Tetrabutylphosphonium hydroxide solution, 40 wt. % in H2O
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O