Copper(I) chloride

≥99.995% trace metals basis

Copper monochloride, Cuprous chloride
Linear Formula:
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level

vapor pressure

1.3 mmHg ( 546 °C)


≥99.995% trace metals basis



reaction suitability

reagent type: catalyst
core: copper


mass spectrometry (MS): suitable


≤50.0  ppm Trace Rare Earth Analysis


1490 °C (lit.)


430 °C (lit.)


slightly soluble 0.47 g/L at 20 °C

Featured Industry

Battery Manufacturing

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

The structure of copper(I) chloride is similar to zinc-blende crystal at room temperature; the structure is wurtzite at 407 °C and at higher temperatures it forms copper(I) chloride vapor as per mass spectroscopy.


CuCl may be used as an initiator for hydrostannation of α,α-unsaturated ketones and other similar radical reactions.
Shows unique character as an initiator of radical reactions such as the hydrostannation of α,β-unsaturated ketones.
Shows unique character as an initiator of radical reactions such as the hydrostannation of α,β-unsaturated ketones.


10, 100 g in poly bottle




Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1


8B - Non-combustible, corrosive hazardous materials

WGK Germany


Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Changjun Park et al.
Polymers, 12(2) (2020-02-07)
Here we report the dual light- and thermo-responsive behavior of well-defined rod-coil block copolymers composed of an azobenzene unit, 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA). Azobenzene-containing rigid rod blocks prepared by chain growth condensation polymerization of the azobenzene...
Qidong Wu et al.
ACS omega, 5(36), 23450-23459 (2020-09-22)
Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting...
Madelung O
Semiconductors: Data Handbook null
J Hedlund et al.
Biomacromolecules, 10(4), 845-849 (2009-02-13)
Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the viscoelastic properties of the blue mussel, Mytilus edulis, foot protein 1 (Mefp-1) adsorbed on modified hydrophobic gold surfaces. The change in viscoelasticity was studied after addition of Cu2+...
Satoshi Mizuta et al.
Organic letters, 15(6), 1250-1253 (2013-03-08)
A new catalytic method to access allylic secondary CF3 products is described. These reactions use the visible light excited Ru(bpy)3Cl2·6H2O catalyst and the Togni or Umemoto reagent as the CF3 source. The photoredox catalytic manifold delivers enantioenriched allylic trifluoromethylated products...
Spectral conversion for solar cells is an emerging concept in the field of photovoltaics, and it has the potential to increase significantly the efficiency of solar cells. Lanthanide ions are ideal candidates for spectral conversion, due to their high luminescence efficiencies and rich energy level structure that allows for great flexibility in the upconversion and downconversion of photons in a wide spectral region (NIR-VIS-UV).
Read More
We presents an article about Copper(I)-mediated Living Radical Polymerization in the Presence of Pyridylmethanimine Ligands, and the emergence of living radical polymerization mediated by transition metal catalysts in 1995, which was a seminal piece of work in the field of synthetic polymer chemistry.
Read More
An article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.
Read More
Related Content
Oxidation and reduction reactions are some of the most common transformations encountered in organic synthesis, and are some of the organic chemist’s most powerful tools for creating novel products. Below is a list of the most commonly used oxidizing and reducing agents currently available in our catalog.
Read More
Thermoelectric Performance of Perovskite-type Oxide Materials
Read More
We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.
Read More
Tools for Performing ATRP
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service