Merck
All Photos(1)

Documents

349178

Sigma-Aldrich

Copper

foil, thickness 0.25 mm, 99.98% trace metals basis

Sign Into View Organizational & Contract Pricing

Synonym(s):
Copper sheet
Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.98% trace metals basis

form

foil

resistivity

1.673 μΩ-cm, 20°C

thickness

0.25 mm

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

Related Categories

General description

Copper foil with a thickness of 0.25 mm and a 99.98% trace metals basis is a top-quality product that has numerous industrial and commercial applications. It is produced using cutting-edge manufacturing processes that ensure superior quality and consistency. The foil is carefully inspected to meet the specified purity level and is free from any imperfections like scratches, dents, and tears. Copper foil is a highly versatile material that offers outstanding electrical conductivity, thermal conductivity, and corrosion resistance.

Application

Copper foil is commonly used in a variety of applications such as printed circuit boards (PCBs), electromagnetic shielding, and as a substrate in chemical vapor deposition. The 0.25 mm thickness of this foil makes it suitable for many applications, providing sufficient strength and durability while remaining easy to handle and manipulate. The 99.98% trace metals basis ensures that the copper foil is of the highest quality, with only minimal levels of impurities like lead, arsenic, and bismuth. This level of purity is critical for many industrial applications, particularly those in the electronics industry, where even small amounts of impurities can significantly impact the performance and reliability of the end product.

Quantity

50×50 mm (approximately 5.5 g)
150×150 mm (approximately 49.5 g)

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by
Yan Meng et al.
Biochimica et biophysica acta, 1690(3), 208-219 (2004-10-30)
Hepatic abnormalities in Long-Evans Cinnamon (LEC) rats, an animal model of Wilson disease (WD), were restored by the expression of the human ATP7B cDNA under the control of CAG promoter. Expression of ATP7B transcript and protein in the liver of
Seiko Ishida et al.
Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19507-19512 (2013-11-13)
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure
R Squitti et al.
Neurology, 67(1), 76-82 (2006-07-13)
To assess whether serum copper in Alzheimer disease (AD) correlates with cognitive scores, beta-amyloid, and other CSF markers of neurodegeneration. The authors studied copper, ceruloplasmin, total peroxide, and antioxidants levels (TRAP) in serum; beta-amyloid in plasma; and copper, beta-amyloid, h-tau

Articles

Can there be an effective strategy for finding breakthrough materials, since they are, by definition, unpredictable? One answer is found in Combinatorial Materials Science techniques, which represent a powerful approach to identifying new and unexpected materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service