Merck
All Photos(2)

451649

Sigma-Aldrich

Iron(III) chloride

greener alternative

anhydrous, powder, ≥99.99% trace metals basis

Synonym(s):
Iron trichloride, Ferric chloride, Molysite
Linear Formula:
FeCl3
CAS Number:
Molecular Weight:
162.20
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

grade

anhydrous

vapor density

5.61 (vs air)

vapor pressure

1 mmHg ( 194 °C)

assay

≥99.99% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: iron

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

impurities

≤100.0 ppm Trace Metal Analysis

mp

304 °C (lit.)

application(s)

battery manufacturing

greener alternative category

Aligned

SMILES string

Cl[Fe](Cl)Cl

InChI

1S/3ClH.Fe/h3*1H;/q;;;+3/p-3

InChI key

RBTARNINKXHZNM-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

The vapor-phase co-reductions with other metal halides by hydrogen results in finely divided intermetallics with applications as structural materials or compounds with useful thermoelectric, magnetic, and oxidation-resitance properties.
Iron(III) chloride (Ferric Chloride, FeCl3) has been used in the synthesis of Au/Fe nanoparticles. It has been used as oxidative etching agent during the preparation of platinum nanostructures.

Packaging

1, 5 g in ampule

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Skin Irrit. 2

Storage Class Code

8B - Non-combustible, corrosive hazardous materials

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

More documents

Quotes and Ordering

Enhancing graphene/CNT based electrochemical detection using magneto-nanobioprobes.
Jiang M, et al.
Material Matters, 2, 877-883 (2012)
Maria Serra et al.
Membranes, 10(5) (2020-05-15)
Corn fiber, a by-product of the starch industry, is presently incorporated in animal feed. However, it has arabinoxylans as added-value components (besides ferulic acid) that should be valorized. In this work, the raw material, a fraction enriched in arabinoxylans from
Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study.
David F and David PG.
The Journal of Physical Chemistry, 80(6), 579-583 (1976)
Priyanka Sharma et al.
Scientific reports, 2, 877-877 (2012-11-21)
Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids
Eagleson M.
Concise Encyclopedia Chemistry, 553-553 (1994)

Articles

Tools for Performing ATRP

Tools for Performing ATRP

Copper(I)-mediated Living Radical Polymerization in the Presence of Pyridylmethanimine Ligands

We presents an article about Copper(I)-mediated Living Radical Polymerization in the Presence of Pyridylmethanimine Ligands, and the emergence of living radical polymerization mediated by transition metal catalysts in 1995, which was a seminal piece of work in the field of synthetic polymer chemistry.

Gold Nanorod Synthesis

Plasmonic nanoparticles have unique optical properties that can be tailored to suit a variety of applications in the biotechnology1–8 and electronics9–16 industries.

Protocols

Concepts and Tools for RAFT Polymerization

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

Typical Procedures for Polymerizing via ATRP

An article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Related Content

Noble-Metal Nanostructures with Controlled Morphologies

Noble-metal nanostructures are widely used in a variety of applications ranging from catalysis to electronics, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and biomedical research.

Oxidizing and Reducing Agents

Oxidation and reduction reactions are some of the most common transformations encountered in organic synthesis, and are some of the organic chemist’s most powerful tools for creating novel products. Below is a list of the most commonly used oxidizing and reducing agents currently available in our catalog.

Lithium-Ion Battery Performance: Dependence on Material Synthesis and Post‑Treatment Methods

Lithium-ion batteries represent a group of electrochemical devices used for electricity storage and have attracted a lot of attention in the past two decades due to their portability, rechargeability and low cost.

A Micro Review of Reversible Addition/Fragmentation Chain Transfer (RAFT) Polymerization

We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service