Merck
All Photos(2)

687502

Sigma-Aldrich

Titanium(IV) isopropoxide

packaged for use in deposition systems

Synonym(s):
TTIP, Tetraisopropyl orthotitanate
Linear Formula:
Ti[OCH(CH3)2]4
CAS Number:
Molecular Weight:
284.22
Beilstein:
3679474
EC Number:
MDL number:
PubChem Substance ID:

assay

99.999%

form

liquid

reaction suitability

core: titanium
reagent type: catalyst

refractive index

n20/D 1.464 (lit.)

bp

232 °C (lit.)

mp

14-17 °C (lit.)

density

0.96 g/mL at 20 °C (lit.)

SMILES string

CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C

InChI

1S/4C3H7O.Ti/c4*1-3(2)4;/h4*3H,1-2H3;/q4*-1;+4

InChI key

VXUYXOFXAQZZMF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Atomic number of base material: 22 Titanium

Application

Novel metal oxide/phosphonate hybrids were formed from titanium(IV) isopropoxide in a two-step sol-gel process. Starting material for barium-strontium-titanate thin films. Used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes. Applied in the formation of a heterosupermolecule consisting of a TiO2 nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.

Packaging

25 g in stainless steel cylinder

Pictograms

FlameExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 3 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

105.8 °F - Pensky-Martens closed cup

Flash Point(C)

41 °C - Pensky-Martens closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. Can the empty deposition cylinders be refilled?

    Yes, we are able to refill these cylinders through our SAFC Hitech group.  Please contact our Technical Service department by email at techserv@sial.com, and they will forward you to the appropriate SAFC Hitech representative for a quote.

  6. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Tadashi Kokubo et al.
Journal of materials science. Materials in medicine, 19(2), 695-702 (2007-07-11)
A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 degrees C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of
Manas K Panda et al.
Dalton transactions (Cambridge, England : 2003), 39(9), 2428-2440 (2010-02-18)
Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) =
Henrique Antonio Mendonça Faria et al.
Materials science & engineering. C, Materials for biological applications, 56, 260-268 (2015-08-08)
The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study
Yann Sarazin et al.
Dalton transactions (Cambridge, England : 2003), (2)(2), 340-350 (2005-12-21)
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral
Laszlo Sipos et al.
Biomacromolecules, 6(5), 2570-2582 (2005-09-13)
A poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock polymer is employed as the polymer drug carrier for the TAXUS Express2 Paclitaxel-Eluting Coronary Stent system (Boston Scientific Corp.). It has been shown that the release of paclitaxel (PTx) from SIBS can be modulated by modification

Articles

ALD — A Versatile Tool for Nanostructuring

In recent years considerable interest in ALD has emerged, mainly due to its ability to controllably coat even very small structures, e.g. nanoor microstructures.

Dye-Sensitized and Perovskite Solar Cells: Interface Engineering by Atomic Layer Deposition

Since the demonstration of the first practical solar cell 60 years ago, research on novel materials, improved solar cell design and structure, and innovative manufacturing processes have all contributed to a continuous increase in the efficiency of photovoltaic (PV) devices.

A Review of Mesoporous TiO2 Thin Films

In this paper, we discuss recent advances in the preparation of various TiO2 porous structures via hard and soft-templating routes. Specifically, we focus on recent developments in TiO2 mesoporous thin films in a combined sol-gel and evaporation-induced self-assembly (EISA) process.

Nanowire Synthesis: From Top-Down to Bottom-Up

The properties of many devices are limited by the intrinsic properties of the materials that compose them.

See All

Related Content

The Savannah ALD System - An Excellent Tool for Atomic Layer Deposition

Atomic Layer Deposition (ALD) is a coating technology that allows perfectly conformal deposition onto complex 3D surfaces. The reason for this uniform coating lies in the saturative chemisorption of sequential cycles of precursor vapors.

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

High Purity Metalorganic Precursors for CPV Device Fabrication

Thin film photovoltaic devices have become increasingly important in efficiently harnessing solar energy to meet consumer demand.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service