754730

Sigma-Aldrich

Tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate

97%

Synonym(s):
Ru(bpy)3(PF6)2, Ruthenium-tris(2,2′-bipyridyl) dihexafluorophosphate
Empirical Formula (Hill Notation):
C30H24F12N6P2Ru
CAS Number:
Molecular Weight:
859.55
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

97%

reaction suitability

core: ruthenium
reaction type: Photocatalysis
reagent type: catalyst

impurities

(Material is not fluorescence active.)

mp

>300 °C

photocatalyst activation

425 nm

absorption

13,400 at 456 nm
80,000 at 291 nm

SMILES string

[Ru++].F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F.c1ccc(nc1)-c2ccccn2.c3ccc(nc3)-c4ccccn4.c5ccc(nc5)-c6ccccn6

InChI

1S/3C10H8N2.2F6P.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;2*1-7(2,3,4,5)6;/h3*1-8H;;;/q;;;2*-1;+2

InChI key

KLDYQWXVZLHTKT-UHFFFAOYSA-N

General description

Tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate (Ru(bpy)3(PF6)2) is a conducting polymer that is majorly used as an active layer in electrochemical devices. It facilitates the formation of highly efficient and low voltage devices. It shows an external quantum efficiency of 0.35 and 400 cd/m2 at 3V.

Application

Ru(bpy)3(PF6)2 may be used as a conjugating polymer in the development of light emitting electrochemical cell based devices such as light emitting diodes (LEDs). It is also used as a high-efficiency triplet emitter for OLED/Sensor research.

Packaging

1 g in glass bottle

storage_class_code

13 - Non Combustible Solids

WGK Germany

WGK 3

Flash Point F

Not applicable

Flash Point C

Not applicable

Certificate of Analysis

Certificate of Origin

Direct measurement of the electric-field distribution in a light-emitting electrochemical cell
Slinker JD, et al.
Testing, 6(11), 894-894 (2007)
Wesley R Browne et al.
Journal of the American Chemical Society, 125(7), 1706-1707 (2003-02-13)
The excited-state properties of the transition metal complexes tris(2,2'-bipyridine) ruthenium(II) and tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) are examined using picosecond time-resolved luminescence spectroscopy. For both complexes, direct observation of a short-lived high-energy emission with a lifetime of less than 4 ps is reported....
Valentina Leandri et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 20(4), 618-626 (2019-01-10)
The excited state dynamics of Tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, [Ru(bpy)3 (PF6 )2 ], was investigated on the surface of bare and sensitized TiO2 and ZrO2 films. The organic dyes LEG4 and MKA253 were selected as sensitizers. A Stern-Volmer plot of LEG4-sensitized TiO2...
Silvia Voci et al.
Analytical and bioanalytical chemistry, 412(17), 4067-4075 (2020-04-29)
Nanofluidic electrochemical devices confine the volume of chemical reactions to femtoliters. When employed for light generation by electrochemiluminescence (ECL), nanofluidic confinement yields enhanced intensity and robust luminescence. Here, we investigate different ECL pathways, namely coreactant and annihilation ECL in a...
Thin-film solid-state electroluminescent devices based on tris (2, 2 `-bipyridine) ruthenium (II) complexes
Buda, M
Journal of the American Chemical Society, 124(21), 6090-6098 (2002)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service