Search Within
Applied Filters:
Keyword:'43208'
Showing 1-30 of 64 results for "

43208

" within Papers
Two-photon excitation STED microscopy
Moneron, G.; Hell, S. W.
Optics Express, 17(17), 14567-14573 (2009)
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles.
Chiang, HC.; et al
Nature Communications, 5, 3356-3356 (2014)
Spatial organization of proteins in metastasizing cells.
Ronnlund, D.; et al.
Cytometry, 83(9), 855-865 (2013)
STED microscopy resolves nanoparticle assemblies.
Willig K.I.; et al.
New Journal of Physics, 8(6), 106-106 (2006)
Maturation of active zone assembly by Drosophila Bruchpilot.
Fouquet, W.; et al.
The Journal of Cell Biology, 186(1), 129-145 (2009)
Sub-Diffraction Nano Manipulation Using STED AFM.
Chacko, Jenu V.; et al.
PLoS ONE, 8(6), e66608-e66608 (2013)
Kirill Kolmakov et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 16(1), 158-166 (2009-12-02)
Fluorescent markers emitting in the red are extremely valuable in biological microscopy since they minimize cellular autofluorescence and increase flexibility in multicolor experiments. Novel rhodamine dyes excitable with 630 nm laser light and emitting at around 660 nm have been...
Block Copolymer Nanostructures Mapped by Far-Field Optics.
Ullal, C.K.; et al
Nano Letters, 9(6), 2497-2500 (2009)
Frequency dependent detection in a STED microscope using modulated excitation light.
Ronzitti, E.; Harke, B.; Diaspro, A.
Optics Express, 21(1), 210-210 (2013)
Johanna Bückers et al.
Optics express, 19(4), 3130-3143 (2011-03-04)
We describe a STED microscope optimized for colocalization experiments with up to three colors. Two fluorescence labels are separated by their fluorescence lifetime whereas a third channel is discriminated by the wavelength of fluorescence emission. Since it does not require...
STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers.
Laporte, G.; Psaltis, D.
Biomedical Optics Express, 7(1), 34-44 (2016)
Self-Calibrated Line-Scan STED-FCS to Quantify Lipid Dynamics in Model and Cell Membranes.
Benda, A.; Ma, Y.; Gaus, K.
Biophysical Journal, 108(3), 596-609 (2015)
Matthias Reuss et al.
Optics express, 18(2), 1049-1058 (2010-02-23)
Stimulated emission depletion (STED) microscopy usually employs a scanning excitation beam that is superimposed by a donut-shaped STED beam for keeping the fluorophores at the periphery of the excitation spot dark. Here, we introduce a simple birefringent device that produces...
Nanoscale organization of nicotinic aceylcholine receptors by stimulated emission depletion microscopy.
Kellner, R.R., et al.
Neuroscience, 144(1), 135-143 (2007)
Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier.
Dreier, J.; S?rensen, J. A.; Brewer, J. R.
PLoS ONE, 11(1) (2016)
Dominik Wildanger et al.
Optics express, 16(13), 9614-9621 (2008-06-26)
We report on a straightforward yet powerful implementation of stimulated emission depletion (STED) fluorescence microscopy providing subdiffraction resolution in the far-field. Utilizing the same super-continuum pulsed laser source both for excitation and STED, this implementation of STED microscopy avoids elaborate...
D Wildanger et al.
Journal of microscopy, 236(1), 35-43 (2009-09-24)
The advent of supercontinuum laser sources has enabled the implementation of compact and tunable stimulated emission depletion fluorescence microscopes for imaging far below the diffraction barrier. Here we report on an enhanced version of this approach displaying an all-physics based...
Katrin I Willig et al.
Nature methods, 4(11), 915-918 (2007-10-24)
We report stimulated emission depletion (STED) fluorescence microscopy with continuous wave (CW) laser beams. Lateral fluorescence confinement from the scanning focal spot delivered a resolution of 29-60 nm in the focal plane, corresponding to a 5-8-fold improvement over the diffraction...
Comparing video-rate STED nanoscopy and confocal microscopy of living neurons.
Lauterbach, M. A.; et al.
Journal of Biophotonics, 3(7), 417-424 (2010)
STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis.
Willig K.I.; et al.
Nature, 440(7086), 935-939 (2006)
Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination
Xusan, Y., et al.
Royal Society of Chemistry Advances, 4(22), 11305-11305 (2014)
Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay.
Lin, P.Y.; et al
Optics Express, 20(10), 11445-11450 (2012)
Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy.
Zhang, P.; Goodwin, P.M.; Werner, J.H.
Optics Express, 22(10), 12398-12409 (2014)
Experimental Proof of Concept of Nanoparticle-Assisted STED.
Sonnefraud, Y.; et al
Nano Letters, 14(8), 4449-4453 (2014)
A novel nanoscopic tool by combining AFM with STED microscopy.
Harke, B.; et al
Optical Nanoscopy, 1(1), 3-3 (2012)
STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA.
Heller, I.; et al.
Nature Methods, 10(9), 910-916 (2013)
2PE-STED Microscopy with a Single Ti. Sapphire Laser for Reduced Illumination.
Li, Q.; Wang, Y.; et al
PLoS ONE, 9(2), e88464-e88464 (2014)
Size-Dependent Localization and Quantitative Evaluation of the Intracellular Migration of Silica Nanoparticles in Caco-2 Cells.
Schubbe, S.; et al.
Chemistry of Materials, 24(5), 914-923 (2012)
Shira Halivni et al.
ACS nano, 6(3), 2758-2765 (2012-02-09)
Fluorescence resonance energy transfer (FRET) involving a semiconductor nanoparticle (NP) acting as a donor, attached to multiple acceptors, is becoming a common tool for sensing, biolabeling, and energy transfer applications. Such nanosystems, with dimensions that are in the range of...
Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy.
Steshenko, O.; et al.
Biophysical Journal, 110(11), 2441-2450 (2016)
Page 1 of 3
Page 1 of 3