Merck
  • Home
  • Search Results
  • Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes.

Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie (2020-06-11)
Ren-Long Jan, Shun-Cheng Yang, Yi-Ching Liu, Rei-Cheng Yang, Siao-Ping Tsai, Shang-En Huang, Jwu-Lai Yeh, Jong-Hau Hsu
ABSTRACT

We have recently shown that exogenous administration of extracellular heat shock protein HSC70, a previously recognized intracellular chaperone protein, can protect against LPS-induced cardiac dysfunction through anti-inflammatory actions. However, whether it can also exert anti-hypertrophic effect is unknown. The present study was aimed to investigate the efficacy of HSC70 against cardiac hypertrophy and its underlying molecular mechanisms. Cardiomyocytes were isolated from the cardiac ventricles of neonatal Wistar rats and LPS (1 μg/mL) was used to induce the hypertrophic responses. We found that HSC70 (0.1, 1 and 5 μg/mL) pretreatment attenuated LPS-induced cardiomyocyte hypertrophy dose-dependently. In addition, HSC70 mitigated LPS-induced inflammatory mediators including TNF-α, IL-6, NO, iNOS and COX-2, with down-regulated protein expression of MMP-2 and MMP-9. Moreover, HSC70 repressed LPS-induced signaling of MAPK and Akt. Finally, HSC70 inhibited NF-κB subunit p65, and the DNA binding activity of NF-κB. Taken together, these findings suggest that in vitro HSC70 can exert anti-hypertrophic effects through inhibition of pro-inflammatory mediators, which are potential mediated by the down-regulation of MAPK, Akt and NF-κB signaling pathways. In conclusion, extracellular HSC70 may be a novel pharmacologic strategy in the management of cardiac hypertrophy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O26:B6, ≥10,000 EU/mg, purified by phenol extraction