• Home
  • Search Results
  • 3'-Modified oligodeoxyribonucleotides for the study of 2-deoxyribose damage in DNA.

3'-Modified oligodeoxyribonucleotides for the study of 2-deoxyribose damage in DNA.

Bioorganic & medicinal chemistry letters (2012-12-26)
Buthina Al-Oudat, Alex Salyer, Kevin Trabbic, Amanda Bryant-Friedrich
ABSTRACT

Well-defined substrates for the study of oxidative processes are important for the elucidation of the role of DNA damage in the etiology of diseases such as cancer. We have synthesized 3'-modified oligodeoxyribonucleotides (ODNs) using 5'→3' 'reverse' DNA synthesis for the study of 2-deoxyribose oxidative damage to DNA. The modified monomers designed for these studies all share a common feature, they lack the naturally occurring 3'-hydroxyl group found in 2-deoxyribonucleosides. Modified H-phosphonates containing 3'-phenyl selenides as well as saturated and unsaturated sugars were obtained and incorporated in ODNs. These ODNs were used to investigate the fate of C3'-dideoxyribonucleotide radicals in DNA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Deoxy-D-ribose, 97%
Sigma-Aldrich
2-Deoxy-D-ribose, ≥99.0% (TLC)
Sigma-Aldrich
2-Deoxy-D-ribose, suitable for cell culture, BioReagent

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.