• Home
  • Search Results
  • A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

Materials science & engineering. C, Materials for biological applications (2013-08-06)
Mohd Talha, C K Behera, O P Sinha
ABSTRACT

The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Raney®-Nickel, W.R. Grace and Co. Raney® 2800, slurry, in H2O, active catalyst
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Nickel, nanopowder, <100 nm avg. part. size, ≥99% trace metals basis
Sigma-Aldrich
Nickel, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.125 mm, ≥99.9%
Sigma-Aldrich
Raney®-Nickel, W.R. Grace and Co. Raney® 2400, slurry, in H2O, active catalyst
Sigma-Aldrich
Nickel, wire, diam. 0.25 mm, ≥99.9%
Sigma-Aldrich
Nickel, foil, thickness 0.5 mm, 99.98% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.5 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.25 mm, 99.995% trace metals basis
Sigma-Aldrich
Nickel, rod, diam. 6.35 mm, ≥99.99% trace metals basis
Nickel, mesh, 100x250mm, nominal aperture 0.73mm, wire diameter 0.25mm, 26x26 wires/inch, open area 55%, plain weave mesh, 99%
Nickel, wire reel, 20m, diameter 0.025mm, as drawn, 99.98%
Nickel, wire reel, 10m, diameter 0.01mm, as drawn, 99.98%
Nickel, rod, 100mm, diameter 16mm, 99.99+%
Nickel, foil, not light tested, 100x100mm, thickness 0.01mm, 99.95%
Nickel, wire reel, 20m, diameter 0.125mm, hard, 99.98%
Nickel, rod, 100mm, diameter 3.0mm, 99%
Nickel, wire reel, 1m, diameter 1.0mm, hard, 99.98%
Nickel, broken cathode squares, 1000g, max. size 50mm, 99.8%
Nickel, tube, 1000mm, outside diameter 6.5mm, inside diameter 5.5mm, wall thickness 0.5mm, hard, 99.5%
Nickel, foil, 50mm disks, thickness 0.05mm, annealed, 99%
Nickel, wire reel, 20m, diameter 0.5mm, as drawn, 99%
Nickel, foil, 4mm disks, thickness 0.075mm, as rolled, 99.98%
Nickel, foil, 4mm disks, thickness 0.125mm, annealed, 99%
Nickel, foil, 4mm disks, thickness 0.125mm, annealed, 99.98%
Nickel, foil, 4mm disks, thickness 0.125mm, as rolled, 100%
Nickel, foil, 4mm disks, thickness 0.125mm, as rolled, 99.99+%