• Home
  • Search Results
  • Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.

Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity.

Ecotoxicology and environmental safety (2014-05-20)
Mohd Asgher, Nafees A Khan, M Iqbal R Khan, Mehar Fatma, Asim Masood
ABSTRACT

We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO₄(2-), and the effect of 1.0 mM SO₄(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO₄(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Sulfur, 99.998% trace metals basis
Sigma-Aldrich
Sulfur, powder, 99.98% trace metals basis
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Cadmium, powder, −100 mesh, 99.5% trace metals basis
Sigma-Aldrich
Ethephon, ≥96% (titration)
Glutathione, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Cadmium, granular, 30-80 mesh, ≥99%
Sigma-Aldrich
Cadmium, granular, ≥99%, 5-20 mesh
Supelco
Sulfur, PESTANAL®, analytical standard
Supelco
Ethephon, PESTANAL®, analytical standard
Sigma-Aldrich
Sulfur, flakes, ≥99.99% trace metals basis
Sigma-Aldrich
Ethylene, 99.99%
Sigma-Aldrich
Ethylene, purum, ≥99.9%
Sigma-Aldrich
Ethylene, ≥99.9%
Cadmium, foil, 100x100mm, thickness 1.0mm, as rolled, 99.99%
Cadmium, wire reel, 0.1m, diameter 0.70mm, as drawn, 99.99+%
Cadmium, wire reel, 0.1m, diameter 1.2mm, as drawn, 99.99+%
Cadmium, wire reel, 0.1m, diameter 2.0mm, hard, 99.99+%
Cadmium, wire reel, 0.1m, diameter 1.0mm, hard, 99.999%
Cadmium, wire reel, 0.2m, diameter 0.5mm, hard, 99.99+%
Cadmium, wire reel, 0.2m, diameter 0.70mm, as drawn, 99.99+%
Cadmium, wire reel, 0.2m, diameter 1.2mm, as drawn, 99.99+%
Cadmium, wire reel, 0.2m, diameter 2.0mm, hard, 99.99+%
Cadmium, wire reel, 0.2m, diameter 0.125mm, as drawn, 99.9%
Cadmium, wire reel, 0.2m, diameter 1.0mm, hard, 99.999%
Cadmium, wire reel, 0.5m, diameter 0.25mm, hard, 99.99+%
Cadmium, wire reel, 0.5m, diameter 0.5mm, hard, 99.95+%