• Home
  • Search Results
  • Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).

Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).

Chemosphere (2014-07-23)
Yang Liu, Martina G Vijver, Willie J G M Peijnenburg
ABSTRACT

Metals are always found in the environment as mixtures rather than as solitary elements. However, effect models such as biotic ligand models (BLMs) are usually derived for toxicity prediction of single metals. Our study aimed at predicting mixture toxicity of Cu-Ni, Cu-Zn and Cu-Ag combinations to lettuce (Lactucasativa L.) by combining BLMs with three toxicity indexes: the toxic unit, the overall amounts of metal ions bound to the biotic ligands and the toxic equivalency factor. The accumulation of metal ions at the biotic ligands was used to determine the toxic potency of metals alone or in combination. On the basis of parameters derived from toxicity assessment of individual metals, these three extended BLMs appeared to be all acceptable (p<0.0001) in assessing toxicity of diverse metal mixtures. The BLM-based approaches integrated competition between metal ions in assessing mixture toxicity and showed different predictive ability for each metal combination. The outcome of modeling suggested that the combined toxicity depends on the specific components of the metal mixtures. The best developed models assist in identifying the type of underlying toxic mechanisms of diverse metal mixtures in terrestrial plants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zinc, dust, <10 μm, ≥98%
Sigma-Aldrich
Silver, conductive paste
Sigma-Aldrich
Zinc, granular, 20-30 mesh, ACS reagent, ≥99.8%
Sigma-Aldrich
Zinc, purum, powder
Sigma-Aldrich
Zinc, powder, <150 μm, 99.995% trace metals basis
Sigma-Aldrich
Raney®-Nickel, W.R. Grace and Co. Raney® 2800, slurry, in H2O, active catalyst
Sigma-Aldrich
Copper, powder, <425 μm, 99.5% trace metals basis
Sigma-Aldrich
Silver, nanopowder, <100 nm particle size, contains PVP as dispersant, 99.5% trace metals basis
Sigma-Aldrich
Copper, foil, thickness 0.25 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, powder, 99.999% trace metals basis
Sigma-Aldrich
Zinc, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.9%, granular
Sigma-Aldrich
Silver, powder, 2-3.5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 1.0 mm, ≥99.9%
Sigma-Aldrich
Silver, flakes, 10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Zinc, nanopowder, 40-60 nm avg. part. size, ≥99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Copper, ACS reagent, granular, 10-40 mesh, ≥99.90%
Sigma-Aldrich
Nickel, nanopowder, <100 nm avg. part. size, ≥99% trace metals basis
Sigma-Aldrich
Zinc, foil, thickness 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, nanopowder, <150 nm particle size, 99% trace metals basis
Sigma-Aldrich
Copper, nanopowder, 60-80 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Silver, powder, 5-8 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Silver nanowires, diam. × L 120-150 nm × 20-50 μm, 0.5% (isopropyl alcohol suspension)
Sigma-Aldrich
Copper, powder, <75 μm, 99%
Sigma-Aldrich
Copper, nanopowder, 40-60 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Copper, powder (spheroidal), 10-25 μm, 98%
Sigma-Aldrich
Zinc, granular, 30-100 mesh, 99%
Sigma-Aldrich
Copper, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.125 mm, ≥99.9%
Sigma-Aldrich
Nickel, powder, <150 μm, 99.99% trace metals basis