Merck
  • Home
  • Search Results
  • Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model.

Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model.

Tissue engineering. Part A (2014-08-12)
Laura E Sidney, Thomas R J Heathman, Emily R Britchford, Arif Abed, Cheryl V Rahman, Lee D K Buttery
ABSTRACT

Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ∼80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ∼70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ∼64% and PGE2 production by ∼52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol phosphate disodium salt hydrate, isomeric mixture
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Phosphoric acid, crystalline, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Diclofenac sodium, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Phosphoric acid-16O4 solution, 70 wt. % in D2O, 99.9 atom % 16O
USP
Diclofenac sodium, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
β-Glycerophosphate disodium salt hydrate, BioUltra, suitable for cell culture, suitable for plant cell culture, ≥99% (titration)
Sigma-Aldrich
β-Glycerophosphate disodium salt hydrate, ≤1.0 mol % L-α-isomer
Dinoprostone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Phosphoric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
Phosphoric acid, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Phosphoric acid, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
Prostaglandin E2, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Diclofenac sodium salt
Sigma-Aldrich
Prostaglandin E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Prostaglandin E2, ≥93% (HPLC), synthetic
Supelco
Sulfanilamide melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Sulfanilamide, puriss. p.a., ≥99% (calc. to the dried substance)
Supelco
Sulfanilamide, VETRANAL®, analytical standard
Sigma-Aldrich
Sulfanilamide, ≥98%
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Supelco
Diclofenac sodium salt, analytical standard