• Home
  • Search Results
  • Membrane transport of nobilin conjugation products and use of the extract of Chamomillae romanae flos influence absorption of nobilin in the Caco-2 model.

Membrane transport of nobilin conjugation products and use of the extract of Chamomillae romanae flos influence absorption of nobilin in the Caco-2 model.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2014-12-06)
U Thormann, R Hänggi, M Kreuter, G Imanidis
ABSTRACT

The purpose of this work was to investigate the role of bioconjugation and carrier mediated efflux of conjugation products in the absorption mechanism of the sesquiterpene lactone nobilin in the Caco-2 model in vitro and to elucidate the impact of the extract of Chamomillae romanae flos and its ingredients on absorption. Transport experiments with inhibitors of P-gp, BCRP, and MRPs were performed to detect efflux and its connection to bioconversion and the effect of different ingredients of the plant extract on absorption processes was determined. Permeability, transport and bioconversion parameter values were deduced by kinetic multi-compartment modeling. Nobilin exhibited high permeability, low relative absorption and fast bioconversion producing glucuronide, cysteine conjugate, and glutathione conjugate that were transported by P-gp (the first two), apical MRP2 and basal MRP3 and possibly MRP1 out of the cell. Inhibition of efflux resulted in diminished bioconjugation and improved absorption. The extract increased the relative fraction absorbed primarily by directly inhibiting bioconversion, and by reducing efflux. Individual extract ingredients could only partly explain this effect. Extensive bioconversion, hence, limited absorption of nobilin in the Caco-2 model and the interplay between conjugation and efflux was shown to provide a possible mechanism for absorption increase. Plant extract increased absorption by this mechanism in addition to metabolic enzyme inhibition.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Sodium acetate, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Sodium acetate, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%