Merck
  • Home
  • Search Results
  • Comparison of growth factor treatments on the fibrochondrogenic potential of canine fibroblast-like synoviocytes for meniscal tissue engineering.

Comparison of growth factor treatments on the fibrochondrogenic potential of canine fibroblast-like synoviocytes for meniscal tissue engineering.

Veterinary surgery : VS (2014-03-13)
Jason Spina, Jennifer Warnock, Katja Duesterdieck-Zellmer, Wendy Baltzer, Jesse Ott, Brian Bay
ABSTRACT

To determine the in vitro effects of differing growth factor treatments on the fibrochondrogenic potential of fibroblast-like synoviocytes from cruciate ligament deficient femorotibial joints of dogs. In vitro study. Synoviocytes from dogs (n = 8) with naturally occurring cruciate ligament insufficiency. Synoviocytes were cultured in monolayer and synthesized into tensioned synoviocyte bioscaffolds (TSB) suspended in media containing TGF-β3, or FGF-2, TGF-β1, and IGF-I. The 1,9-dimethylmethylene blue (DMMB) assay and toluidine blue stain assessed glycosaminoglycan content; hydroxyproline assay, and collagen I and II immunohistochemistry assessed collagen content. Biomechanical properties were determined by materials testing/force-deformation curves. All tissue cultures formed tensioned fibrous tissue-like constructs. Mean tissue cellularity and cellular viability was significantly greater in the triple growth factor-treated TSB by 0.09% and 44%, respectively. Percentage collagen content, and relative gene expression for collagen I, II, and aggrecan was not significantly different between groups. Median percentage of GAG content was significantly greater in triple growth factor-treated TSB by 1.6%. Biomechanical properties were not different in compression. Triple growth factor-treated TSB were significantly stronger in toughness, peak load to failure, and stiffness in tension. TGF-β3 cultured bioscaffolds failed to outperform triple growth factor-treated TSB. Architectural extracellular matrix (ECM) organization and cellularity likely explained the differences between groups. TGF-β3 alone cannot be recommended at this time for in vitro formation of autologous fibrocartilage bioscaffolds for meniscal deficiency.

MATERIALS
Product Number
Brand
Product Description

Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Calcein AM solution, 4 mM in DMSO, ≥90% (HPLC), solution
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
FGF-2 human, recombinant, expressed in insect cells, ≥85% (SDS-PAGE)
Sigma-Aldrich
FGF-2 human, recombinant, expressed in E. coli, ≥95% (SDS-PAGE), ≥95% (HPLC)
Sigma-Aldrich
Anti-Smooth Muscle α-Actin antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Calcein-AM, Small Package (20 X 50 μg ), ≥95.0% (HPLC)
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%