Merck
  • Home
  • Search Results
  • Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice.

Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2014-05-08)
Xiaohui Xu, Tao Liang, Qingwei Wen, Xing Lin, Jingzhi Tang, Qiaoyun Zuo, Liqun Tao, Feifei Xuan, Renbin Huang
ABSTRACT

In Chinese culture, the roots of Averrhoa carambola L. have long been used for medical purposes due to their potent pharmaceutical activities, such as improving digestive function and treating diabetes. Recently, we prepared extracts of Averrhoa carambola L. root (EACR), which were isolated from Averrhoa carambola L. roots using ethanol or water. This study was designed to investigate the potential effects of EACR on streptozotocin (STZ) diabetic mice and to explore the underlying mechanism of these effects. Male mice were injected with STZ through the tail vein (120 mg/kg body weight) and were identified as a diabetic mouse model when the level of blood glucose was ≥11.1 mmol/L. Subsequently, the mice were administered EACR (150, 300, 600, 1200 mg/kg body weight/d) and metformin (320 mg/kg body weight/d) via intragastric gavage for three weeks. The results indicated that EACR significantly decreased the serum levels of blood glucose, total cholesterol (TC), triglycerides (TGs) and free fatty acids (FFAs), whereas the content of serum insulin was elevated. In addition, the expressions of apoptosis-related regulators (including caspase-3, caspase-8 and caspase-9) and the apoptosis-induced protein Bax were markedly down-regulated by EACR, whereas the expression of the anti-apoptotic Bcl-2 protein was notably increased. Furthermore, EACR could protect the diabetic mice against the STZ-induced apoptosis of pancreatic β cells. Taken together, these findings indicate that EACR plays an effective hyperglycemic role that is associated with ameliorating metabolic functions and with inhibiting apoptosis in pancreas tissue.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Iodine, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
Iodine, puriss., ≥99.5% (RT), particles (round)
Sigma-Aldrich
Iodine, flakes, ReagentPlus®, ≥99%
Sigma-Aldrich
Iodine, ACS reagent, ≥99.8%, solid
Supelco
Iodine, ReagentPlus®, ≥99.8% (titration)
Sigma-Aldrich
Iodine, ReagentPlus®, 99.7% trace metals basis, beads, 1-3 mm
Sigma-Aldrich
Iodine, Vetec, reagent grade, 99%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Iodine, 99.999% trace metals basis
Sigma-Aldrich
Iodine, anhydrous, beads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Iodine, ≥99.99% trace metals basis