• Home
  • Search Results
  • Bioassay-Guided Chromatographic Isolation and Identification of Antibacterial Compounds from Artemisia annua L. That Inhibit Clostridium perfringens Growth.

Bioassay-Guided Chromatographic Isolation and Identification of Antibacterial Compounds from Artemisia annua L. That Inhibit Clostridium perfringens Growth.

Journal of AOAC International (2015-04-24)
Elise Ivarsen, Xavier C Fretté, Kathrine B Christensen, Lars P Christensen, Ricarda M Engberg, Kai Grevsen, Anders Kjaer
ABSTRACT

Clostridium perfringens is the causative agent of necrotic enteritis leading to significant losses in the poultry industry. Dichloromethane and n-hexane extracts of aerial parts of Artemisia annua (Asteraceae) exhibited activity against C. perfringens with minimum inhibitory concentrations (MIC) of 185 and 270 μg/mL, respectively. Bioassay-guided fractionation of the extracts gave several active fractions (MIC between 75 and 600 μg/mL). Investigations of the most active fractions resulted in the isolation and characterization of the polyacetylene ponticaepoxide (MIC between 100 and 200 μg/mL) and (+)-threo-(5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol (MIC between 400 and 800 μg/mL), the flavonols chrysosplenol D (MIC between 200 and 400 μg/mL) and casticin (slight inhibition at 800 μg/mL), and 2,4-dihydroxy-6-methoxyacetophenone (slight inhibition at 800 μg/mL). Also, the coumarin scopoletin and the sesquiterpene lactone artemisinin were isolated from active fractions but showed no inhibition of C. perfringens growth at 800 and 2000 μg/mL, respectively. Fractions containing essential oil components with camphor constituting >60% did not show inhibition of C. perfringens up to 1600 μg/mL. Extracts and some active fractions showed higher antibacterial effect than individual bioactive compounds, suggesting that synergistic effects may underlie the observed antibacterial effect. The present study adds new valuable information on the antibacterial effect of A. annua against C. perfringens.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Methanol-d4, ≥99.8 atom % D
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%