• Home
  • Search Results
  • Enhancing performance of P3HT:TiO₂ solar cells using doped and surface modified TiO₂ nanorods.

Enhancing performance of P3HT:TiO₂ solar cells using doped and surface modified TiO₂ nanorods.

Journal of colloid and interface science (2015-03-10)
Yu-Chieh Tu, Herman Lim, Chun-Yu Chang, Jing-Jong Shyue, Wei-Fang Su
ABSTRACT

Here we demonstrated an approach to increase performance of P3HT:TiO2 solar cell either by electron deficient boron or electron rich bismuth doping into TiO2 nanorods. The B doping increases the absorption, crystallinity and electron mobility of TiO2 nanorods. The Bi-doped TiO2 has higher J(sc) as compared with B-doped TiO2, mainly due to the improvement of electron density and increased absorption of TiO2 nanorods. The devices were fabricated from TiO2 nanorods being surface modified by organic dye W-4. The dye facilitates the bandgap alignment and compatibility between TiO2 and P3HT. The power conversion efficiency of solar cell has been increased by 1.33 times and 1.30 times for Bi-doped TiO2 and B-doped TiO2, respectively, as compared with that of as-synthesized TiO2. The results suggest the optical and electronic properties of TiO2 can be tuned by various dopants to enhance the device performance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Titanium(IV) isopropoxide, 97%
Sigma-Aldrich
Oleic acid, ≥99% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Oleic acid, technical grade, 90%
Sigma-Aldrich
Oleic acid, suitable for cell culture, BioReagent
Sigma-Aldrich
Titanium(IV) isopropoxide, 99.999% trace metals basis
Sigma-Aldrich
Titanium(IV) isopropoxide, ≥97.0%
Sigma-Aldrich
Oleic acid, natural, FCC
Sigma-Aldrich
Boron, ≥95% (boron), amorphous powder
Sigma-Aldrich
Pyridine, ≥99%
Sigma-Aldrich
Oleic acid, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Sigma-Aldrich
Titanium(IV) isopropoxide, packaged for use in deposition systems
Sigma-Aldrich
Boron, crystalline, 1 cm, 99.7% trace metals basis
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol, NMR reference standard
Boron, microfoil, disks, 10mm, thinness 0.1μm, specific density 23.5μg/cm2, permanent mylar 3.5μm support, 99.6%
Boron, microfoil, disks, 25mm, thinness 0.1μm, specific density 23.5μg/cm2, permanent mylar 3.5μm support, 99.6%
Boron, monofilament, 100m, diameter 0.1mm
Boron, monofilament, 10m, diameter 0.1mm
Boron, monofilament, 10m, diameter 0.2mm
Boron, monofilament, 200m, diameter 0.1mm
Boron, monofilament, 20m, diameter 0.1mm
Boron, monofilament, 20m, diameter 0.2mm
Boron, monofilament, 50m, diameter 0.1mm
Boron, monofilament, 50m, diameter 0.2mm
Boron, monofilament, 5m, diameter 0.1mm