• Home
  • Search Results
  • Identification of altered protein abundances in cholesteatoma matrix via mass spectrometry-based proteomic analysis.

Identification of altered protein abundances in cholesteatoma matrix via mass spectrometry-based proteomic analysis.

Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale (2015-11-27)
Derrick R Randall, Phillip S Park, Justin K Chau
ABSTRACT

Cholesteatoma are cyst-like structures lined with a matrix of differentiated squamous epithelium overlying connective tissue. Although epithelium normally exhibits self-limited growth, cholesteatoma matrix erodes mucosa and bone suggesting changes in matrix protein constituents that permit destructive behaviour. Differential proteomic studies can measure and compare the cholesteatoma proteome to normal tissues, revealing protein alterations that may propagate the destructive process. Human cholesteatoma matrix, cholesteatoma-involved ossicles, and normal middle ear mucosa, post-auricular skin, and non-involved ossicles were harvested. These tissues were subjected to multiplex peptide labeling followed by liquid chromatography and tandem mass spectrometry analysis. Relative protein abundances were compared and evaluated for ontologic function and putative involvement in cholesteatoma. Our methodology detected 10 764 peptides constituting 1662 unique proteins at 95 % confidence or greater. Twenty-nine candidate proteins were identified in soft tissue analysis, with 29 additional proteins showing altered abundances in bone samples. Ontologic functions and known relevance to cholesteatoma are discussed, with several candidates highlighted for their roles in epithelial integrity, evasion of apoptosis, and immunologic function. This study produced an extensive cholesteatoma proteome and identified 58 proteins with altered abundances contributing to disease pathopathysiology. As well, potential biomarkers of residual disease were highlighted. Further investigation into these proteins may provide useful options for novel therapeutics or monitoring disease status.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Millipore
Acetonitrile solution, suitable for HPLC, acetonitrile:water 5:95% (v/v), 10 mM Ammoniumbicarbonate, pH 10,0
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile, for preparative HPLC, ≥99.8% (GC)
Sigma-Aldrich
Ethanol, absolute, denaturated with 0.5-1.5 Vol.% 2-butanone and approx. 0.001% Bitrex (GC), ≥98% (GC)
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Acetonitrile, configured for PerkinElmer 8900, configured for Polygen, for DNA synthesis
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Ultrapure Acetonitrile