• Home
  • Search Results
  • Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Journal of food science (2015-10-08)
Monika Gibis, Jochen Weiss
ABSTRACT

The impact of precursors such as creatine, creatinine, and glucose on the formation of mutagenic/carcinogenic heterocyclic amines (HAs) were studied in patties of 9 different animal species equally heat treated with a double-plate contact grill. All grilled patties of the various species (veal, beef, pork, lamb, horse, venison, turkey, chicken, ostrich) contained several HAs such as MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline; 0.5-1.4 ng/g), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline, 0 to 1.3 ng/g), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, 1.2 to 10.5 ng/g), harman (1-methyl-9H-pyrido[3,4-b] indole; 0.5 to 3.2 ng/g), and/or norharman (9H-pyrido[3,4-b]indole 0.5 to 1.9 ng/g). Residual glycogen (glucose) content varied greatly from 0.07 to 1.46 wt% on a dry matter (DM) basis. Total creatin(in)e content in raw meat (1.36 to 2.0 wt% DM) hardly differed between species, except in turkey and ostrich (1.1 wt% DM). Chicken contained, compared to all other species, very low concentrations of glucose (0.07 wt% DM) and the highest levels of nonprotein nitrogen compounds. The free amino acids lysine (r = 0.77, P < 0.001), tyrosine, phenylalanine, proline, isoleucine, and aspartic acid (r = 0.47-0.56, P < 0.05) showed significant correlation to PhIP in chicken. Also a linear correlation was found to exist between PhIP (r = 0.87, P < 0.001) and MeIQx (r = 0.35, P < 0.01), and the molar ratio of creatin(in)e to glucose, respectively. Harman as co-mutagens was linearly correlated to the concentration of glucose (r = 0.65, P < 0.001). By contrast, norharman was not significant correlated to glucose levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Potassium hydroxide, ACS reagent, ≥85%, pellets
Sigma-Aldrich
Caffeine, powder, ReagentPlus®
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Perchloric acid, ACS reagent, 70%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Ammonia solution, 7 N in methanol