Merck
  • Home
  • Search Results
  • Regulation at multiple levels control the expression of folate transporters in liver cells in conditions of ethanol exposure and folate deficiency.

Regulation at multiple levels control the expression of folate transporters in liver cells in conditions of ethanol exposure and folate deficiency.

BioFactors (Oxford, England) (2015-07-15)
Shilpa Thakur, Jyotdeep Kaur
ABSTRACT

Complex regulatory mechanisms control the expression of folate transporters within cells. Liver is the primary reserve of the folate stores within the body. As excessive alcohol consumption or inefficient dietary folate intake are known to create folate deficiency, so therefore the current study was designed to explore various regulatory mechanisms controlling the expression of folate transport in liver cells in conditions of ethanol exposure and folate deficiency. In order to see whether the effects mediated by the treatments are reversible or not, ethanol removal, and folate repletion was done after ethanol exposure and folate deficiency treatment respectively. Folate deficiency resulted an increase, whereas ethanol treatment decreased the folic acid uptake within the cells. The alterations in folic acid uptake were in agreement with the observed changes in the expression of folate transporters. Ethanol exposure resulted an increase in promoter methylation of reduced folate carrier; however, folate deficiency had no effect. The effects produced by ethanol exposure and folate deficiency were found to be reversible in nature as depicted in case of ethanol removal and folate repletion group. Rate of synthesis of folate transporters was found to be increased whereas half lives of mRNA of folate transporters was found to be decreased on folate deficiency treatment and reverse was the case on ethanol treatment. Overall, alteration in the expression of folate transporters under ethanol exposure and folate deficient conditions can be attributed to those regulatory mechanisms which work at the mRNA level.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Thiamine pyrophosphate, ≥95%
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate, Vetec, reagent grade
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
Sucrose, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Hemin, BioXtra, from Porcine, ≥96.0% (HPLC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)