Merck
  • Home
  • Search Results
  • HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity.

HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity.

Human molecular genetics (2015-03-06)
Virginia B Mattis, Colton Tom, Sergey Akimov, Jasmine Saeedian, Michael E Østergaard, Amber L Southwell, Crystal N Doty, Loren Ornelas, Anais Sahabian, Lindsay Lenaeus, Berhan Mandefro, Dhruv Sareen, Jamshid Arjomand, Michael R Hayden, Christopher A Ross, Clive N Svendsen
ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Sodium butyrate, ≥98.5% (GC)
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Monoclonal Anti-β-Tubulin III antibody produced in mouse, clone SDL.3D10, ascites fluid
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
1,2-Bis(2-Aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 98%
Sigma-Aldrich
Sodium butyrate, 98%
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
MISSION® esiRNA, targeting human TP53
Sigma-Aldrich
Glycerol, Vetec, reagent grade, 99%
Sigma-Aldrich
Anti-Nestin Antibody, clone 10C2, clone 10C2, Chemicon®, from mouse
Sigma-Aldrich
Sodium butyrate, Vetec, reagent grade, 99%
SAFC
Sodium butyrate
Sigma-Aldrich
Anti-Huntingtin Protein Antibody, a.a. 181-810, clone 1HU-4C8, ascites fluid, clone 1HU-4C8, Chemicon®
Sigma-Aldrich
2-Propylpentanoic acid
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
CNQX, ≥98% (HPLC), solid
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis