Merck
  • Home
  • Search Results
  • Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.

Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.

Food microbiology (2015-09-05)
Pratheeba Yogendrarajah, Frank Devlieghere, Emmanuel Njumbe Ediage, Liesbeth Jacxsens, Bruno De Meulenaer, Sarah De Saeger
ABSTRACT

A liquid chromatography triple quadrupole tandem mass spectrometry method was developed and validated to determine mycotoxins, produced by fungal isolates grown on malt extract agar (MEA). All twenty metabolites produced by different fungal species were extracted using acetonitrile/1% formic acid. The developed method was applied to assess the toxigenic potentiality of Aspergillus flavus (n = 11) and Aspergillus parasiticus (n = 6) strains isolated from black peppers (Piper nigrum L.) following their growth at 22, 30 and 37 °C. Highest mean radial colony growth rates were observed at 30 °C for A. flavus (5.21 ± 0.68 mm/day) and A. parasiticus (4.97 ± 0.33 mm/day). All of the A. flavus isolates produced aflatoxin B1 and O-methyl sterigmatocystin (OMST) while 91% produced aflatoxin B2 (AFB2) and 82% of them produced sterigmatocystin (STERIG) at 30 °C. Except one, all the A. parasiticus isolates produced all the four aflatoxins, STERIG and OMST at 30 °C. Remarkably high AFB1 was produced by some A. flavus isolates at 22 °C (max 16-40 mg/kg). Production of mycotoxins followed a different trend than that of growth rate of both species. Notable correlations were found between different secondary metabolites of both species; R(2) 0.87 between AFB1 and AFB2 production. Occurrence of OMST could be used as a predictor for AFB1 production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloramphenicol, ≥98% (HPLC)
Sigma-Aldrich
Chloramphenicol, γ-irradiated
Sigma-Aldrich
Chloramphenicol, BioReagent, suitable for plant cell culture
Sigma-Aldrich
Chloramphenicol, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), Customized plastic drum
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Ethanolamine, liquid, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Ethanolamine, ≥98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethanolamine, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethanolamine, ≥99%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Ethanolamine, purified by redistillation, ≥99.5%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Millipore
Acetonitrile solution, suitable for HPLC, acetonitrile:water 5:95% (v/v), 10 mM Ammoniumbicarbonate, pH 10,0
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
SAFC
Ethanolamine