Merck
  • Home
  • Search Results
  • Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma.

Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma.

Medical oncology (Northwood, London, England) (2015-10-29)
A C Mamede, S Guerra, M Laranjo, M J Carvalho, R C Oliveira, A C Gonçalves, R Alves, L Prado Castro, A B Sarmento-Ribeiro, P Moura, A M Abrantes, C J Maia, M F Botelho
ABSTRACT

Hepatocellular carcinoma (HCC) has a worldwide high incidence and mortality. For this reason, it is essential to invest in new therapies for this type of cancer. Our team already proved that human amniotic membrane (hAM) is able to inhibit the metabolic activity of several human cancer cell lines, including HCC cell lines. Taking into account the previously performed work, this experimental study aimed to investigate the pathways by which hAM protein extracts (hAMPEs) act on HCC. Our results showed that hAMPE reduce the metabolic activity, protein content and DNA content in a dose- and time-dependent manner in all HCC cell lines. This therapy presents selective cytotoxicity, since it was not able to inhibit a non-tumorigenic human cell line. In addition, hAMPE induced cell morphology alterations in all HCC cell lines, but death type is cell line dependent, as proved by in vitro and in vivo studies. In conclusion, hAMPE have a promising role in HCC therapy, since it is capable of inducing HCC cytotoxicity and cell death.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, Vetec, reagent grade, 98%
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Potassium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Potassium chloride, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Potassium chloride, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.5-100.5%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Glycerol solution, puriss. p.a., 86-89% (T)
Sigma-Aldrich
Potassium chloride, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Potassium chloride, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Potassium chloride, ReagentPlus®, ≥99.0%