Merck
  • Home
  • Search Results
  • Improving diet recipe and cooking methods attenuates hyperphosphatemia in patients undergoing peritoneal dialysis.

Improving diet recipe and cooking methods attenuates hyperphosphatemia in patients undergoing peritoneal dialysis.

Nutrition, metabolism, and cardiovascular diseases : NMCD (2015-07-05)
N Jiang, W Fang, A P Gu, J Z Yuan, X X Yang, A W Lin, Z H Ni, J Q Qian
ABSTRACT

Hyperphosphatemia is an independent predictor for cardiovascular and all-cause mortality in patients undergoing peritoneal dialysis (PD). The study aimed to investigate the effect of dietary intervention on reducing serum phosphate concentration in hyperphosphatemic PD patients. In this single-center clinical trial, 97 prevalent PD patients with serum phosphate concentration ≥ 1.6 mmol/l were allocated to the intervention (n = 48) or control (n = 49) group and followed up for 1 year. In addition to phosphate binder (calcium carbonate) therapy, patients in the intervention group were intensively educated to reduce phosphate-rich food intake and improve cooking methods. While stable in the control group (1.97 ± 0.20 to 1.94 ± 0.35 mmol/l, p > 0.05), the serum phosphate concentration decreased significantly in the intervention group (1.98 ± 0.28 to 1.65 ± 0.33 mmol/l, p = 0.015) concurrently with the drop in dietary phosphate intake (13.03 ± 3.39 to 10.82 ± 3.00 mg/kg ideal body weight/day, p = 0.001). Moreover, after 6 months of intervention, fewer patients needed to use calcium carbonate (from 64.6% to 41.5%, p = 0.029) and the medicine dose reduced significantly (from 2.25 (0, 3.94) to 0 (0, 1.50) g/day, p < 0.001). Our data indicated that intensive dietary intervention of reducing phosphate-rich food intake and improving cooking methods attenuated hyperphosphatemia in PD patients. It suggests that regular assessment of dietary phosphate intake and modification of diet recipe and cooking methods are essential for hyperphosphatemia treatment in PD patients in addition to phosphate binder therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, Vetec, reagent grade, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Calcium carbonate, BioReagent, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
Calcium carbonate, BioXtra, ≥99.0%
Sigma-Aldrich
Calcium carbonate, Vetec, reagent grade, 99%
Sigma-Aldrich
Calcium carbonate, ACS reagent, chelometric standard, 99.95-100.05% dry basis
Sigma-Aldrich
Calcium carbonate, powder, ≤50 μm particle size, 98%
Sigma-Aldrich
Calcium carbonate, ≥99.995% trace metals basis
Sigma-Aldrich
Calcium carbonate, BioUltra, precipitated, ≥99.0% (KT)
Sigma-Aldrich
Calcium carbonate, 99.999% trace metals basis