Merck
  • Home
  • Search Results
  • A new in vitro model to delay high phosphate-induced vascular calcification progression.

A new in vitro model to delay high phosphate-induced vascular calcification progression.

Molecular and cellular biochemistry (2015-09-09)
Paola Ciceri, Francesca Elli, Laura Cappelletti, Delfina Tosi, Paola Braidotti, Gaetano Bulfamante, Mario Cozzolino
ABSTRACT

An increasing amount of patients affected by advanced chronic kidney disease suffer from vascular calcification (VC) that associates with cardiovascular morbidity and mortality. In this study, we created a new experimental in vitro model, trying to better elucidate high phosphate (Pi)-induced VC pathogenic mechanisms. Rat aortic vascular smooth muscle cells (VSMCs) were challenged for 7-10 days with high Pi with a repeated and short suspensions of high Pi treatment (intermittent suspension, IS) that was able to induce a significant inhibition of high Pi calcification, maximal at 5 h. Interestingly, the delay in calcification is a consequence of either the absence of free Pi or calcium-phosphate crystals being comparable to the total effect obtained during the 5 h-IS. The protective effect of IS was mediated by the reduction of apoptosis as demonstrated by the action of 20 μmol/L Z-VAD-FMK and by the preservation of the pro-survival receptor Axl expression. Furthermore, autophagy, during IS, was potentiated by increasing the autophagic flux, evaluated by LC3IIB western, while treating VSMCs with 1 mmol/L valproic acid did not affect VC. Finally, IS prevented VSMC osteoblastic differentiation by preserving smooth muscle lineage markers expression. Our data support the hypothesis that to delay significantly VC is necessary and sufficient the IS of high Pi challenge. The IS was able to prevent significantly apoptosis, to induce a potentiation in autophagy, and to prevent osteoblastic differentiation by preserving SM lineage markers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride, meets USP testing specifications
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
Calcium chloride, Vetec, reagent grade, 96%
Sigma-Aldrich
Magnesium sulfate, Vetec, reagent grade
Sigma-Aldrich
Magnesium sulfate, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Magnesium sulfate, anhydrous, reagent grade, ≥97%
Sigma-Aldrich
Magnesium sulfate, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Magnesium sulfate, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis