• Home
  • Search Results
  • Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

The international journal of biochemistry & cell biology (2015-07-08)
Luís Rato, Marco G Alves, Ana I Duarte, Maria S Santos, Paula I Moreira, José E Cavaco, Pedro F Oliveira
ABSTRACT

The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
SAFC
HEPES
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Fluorescein, for fluorescence, free acid
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Potassium hydroxide, anhydrous, ≥99.95% trace metals basis
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioXtra, ≥97 .0%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture