Merck
  • Home
  • Search Results
  • Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.

Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.

Analytical chemistry (2015-10-30)
Teresa Mairinger, Matthias Steiger, Justyna Nocon, Diethard Mattanovich, Gunda Koellensperger, Stephan Hann
ABSTRACT

For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of (13)C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for (13)C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, (13)C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of Pichia pastoris employing two different tracers, i.e., 1,6(13)C2-glucose and uniformly labeled (13)C-glucose.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
L-Proline, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Aspartic acid, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
L-Aspartic acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
L-Aspartic acid, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Cystathionine, ≥98% (TLC)
Sigma-Aldrich
L-Proline, from non-animal source, meets EP, USP testing specifications, suitable for cell culture
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
L-Alanine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Alanine, ≥98% (TLC)
Sigma-Aldrich
L-Valine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Valine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Dihydroxyacetone phosphate dilithium salt, ≥93% (enzymatic)
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
D-Mannitol 1-phosphate lithium salt, ≥95% (TLC)
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
L-Alanine, ≥99%
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Chlorotrimethylsilane, purified by redistillation, ≥99%
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)