• Home
  • Search Results
  • Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis.

Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis.

Molecular cancer therapeutics (2005-08-12)
Michael R D'Andrea, Jay M Mei, Robert W Tuman, Robert A Galemmo, Dana L Johnson
ABSTRACT

With the advent of agents directed against specific molecular targets in drug discovery, it has become imperative to show a compound's cellular impact on the intended biomolecule in vivo. The objective of the present study was to determine if we could develop an assay to validate the in vivo effects of a compound. Hence, we investigated the in vivo pharmacodynamic activity of JNJ-10198409, a relatively selective inhibitor of platelet-derived growth factor receptor tyrosine kinase (PDGF-RTK), in tumor tissues after administering the compound orally in a nude mouse xenograft model of human LoVo colon cancer. We developed a novel assay to quantify the in vivo anti-PDGF-RTK activity of the inhibitor in tumor tissue by determining the phosphorylation status of phospholipase Cgamma1 (PLCgamma1), a key downstream cellular molecule in the PDGF-RTK signaling cascade. We used two antibodies, one specific for the total (phosphorylated and unphosphorylated forms) PLCgamma1 (pan-PLCgamma1) and the other, specific for phosphorylated form of PLCgamma1 (ph-PLCgamma1) to immunohistochemically detect their expression in tumor tissues. Computer-assisted image analysis was then used to directly compare the ratio of ph-PLCgamma1 to pan-PLCgamma1 immunolabeling intensities in serial sections (5 mum) of tumors obtained from vehicle- and JNJ-10198409-treated tumor-bearing mice. Our data showed statistically significant, dose-dependent differences in the ph-PLC/pan-PLC ratio among the four treatment groups (vehicle, 25, 50, and 100 mg/kg b.i.d.). These results confirmed this compound's ability to suppress PDGF-RTK downstream signaling in tumor tissues in vivo. In addition to this specific application of this in vivo validation approach to those targets that use PLCgamma as a downstream signaling partner, these methods may also benefit other drug discovery targets.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
JNJ-10198409, ≥98% (HPLC), solid

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.