• Home
  • Search Results
  • Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.

Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.

Free radical biology & medicine (2016-11-12)
Martyna Modrzejewska, Maciej Gawronski, Magdalena Skonieczna, Ewelina Zarakowska, Marta Starczak, Marek Foksinski, Joanna Rzeszowska-Wolny, Daniel Gackowski, Ryszard Olinski

The most plausible mechanism behind active demethylation of 5-methylcytosine involves TET proteins which participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine; the latter is further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil can be also generated from thymine in a TET-catalyzed process. Ascorbate was previously demonstrated to enhance generation of 5-hydroxymethylcytosine in cultured cells. The aim of this study was to determine the levels of the abovementioned TET-mediated oxidation products of 5-methylcytosine and thymine after addition of ascorbate, using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Intracellular concentration of ascorbate was determined by means of ultra-performance liquid chromatography with UV detection. Irrespective of its concentration in culture medium (10-100µM) and inside the cell, ascorbate stimulated a moderate (2- to 3-fold) albeit persistent (up to 96-h) increase in the level of 5-hydroxymethylcytosine. However, exposure of cells to higher concentrations of ascorbate (100µM or 1mM) stimulated a substantial increase in 5-formylcytosine and 5-carboxycytosine levels. Moreover, for the first time we demonstrated a spectacular (up to 18.5-fold) increase in 5-hydroxymethyluracil content what, in turn, suggests that TET enzymes contributed to the presence of the modification in cellular DNA. These findings suggest that physiological concentrations of ascorbate in human serum (10-100µM) are sufficient to maintain a stable level of 5-hydroxymethylcytosine in cellular DNA. However, markedly higher concentrations of ascorbate (ca. 100µM in the cell milieu or ca. 1mM inside the cell) were needed to obtain a sustained increase in 5-formylcytosine, 5-carboxycytosine and 5-hydroxymethyluracil levels. Such feedback to elevated concentrations of ascorbate may reflect adaptation of the cell to environmental conditions.

Product Number
Product Description

2′-Deoxycytidine, ≥99% (HPLC)