65906

Sigma-Aldrich

Phalloidin–Atto 647N

BioReagent, suitable for fluorescence, ≥85% (HPCE)

Synonym(s):
Atto 647N-Phalloidin
NACRES:
NA.32

Quality Level

product line

BioReagent

assay

≥85% (HPCE)

manufacturer/tradename

ATTO-TEC GmbH

fluorescence

λex 644 nm; λem 669 nm in 0.1 M phosphate pH 7.0

suitability

suitable for fluorescence

detection method

fluorometric

storage temp.

−20°C

Application

Atto fluorescent labels are designed for high sensitivity applications, including single molecule detection. Atto labels have rigid structures that do not show any cis-trans-isomerization. Thus these labels display exceptional intensity with minimal spectral shift on conjugation.

Legal Information

This product is for Research use only. In case of intended commercialization, please contact the IP-holder (ATTO-TEC GmbH, Germany) for licensing.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

RIDADR

UN 2811 6.1 / PGII

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Georgios Trichas et al.
BMC biology, 6, 40-40 (2008-09-17)
Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry...
Catherine Pfefferli et al.
Nature communications, 8, 15151-15151 (2017-05-04)
The existence of common mechanisms regulating organ regeneration is an intriguing concept. Here we report on a regulatory element that is transiently activated during heart and fin regeneration in zebrafish. This element contains a ctgfa upstream sequence, called careg, which...
Benedetta Artegiani et al.
Nature cell biology, 22(3), 321-331 (2020-03-04)
CRISPR-Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR-Cas9-mediated homology-independent organoid transgenesis (CRISPR-HOT), which enables efficient generation...
Maria-Del-Carmen Diaz-de-la-Loza et al.
Development (Cambridge, England), 147(5) (2020-03-04)
Mutations in the Ultrabithorax (Ubx) gene cause homeotic transformation of the normally two-winged Drosophila into a four-winged mutant fly. Ubx encodes a HOX family transcription factor that specifies segment identity, including transformation of the second set of wings into rudimentary...
Ceniz Zihni et al.
Nature cell biology, 19(9), 1049-1060 (2017-08-22)
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR...

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.