• Home
  • Search Results
  • Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2+/calcineurin/Erk pathway.

Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2+/calcineurin/Erk pathway.

EBioMedicine (2019-03-19)
Zhen Liu, Liming Jiang, Yiran Li, Binbin Xie, Jiansheng Xie, Zhanggui Wang, Xiaoyun Zhou, Hanliang Jiang, Yong Fang, Hongming Pan, Weidong Han
ABSTRACT

Crizotinib has potent anti-tumor activity in patients with advanced MET-amplified non-small cell lung cancer (NSCLC). However, the therapeutic effect is still not satisfying. Thus, developing approaches that improve the efficacy of crizotinib remains a significant challenge. MET-amplified NSCLC cell lines were treated with crizotinib and cyclosporine A (CsA). Cell viability was determined by MTS assay. The changes of apoptosis, cell cycle and calcineurin-Erk pathways were assessed by western blot. Xenograft mouse model, primary human NSCLC cells and hollow fiber assays were utilized to confirm the effects of CsA. We demonstrated that CsA significantly increased the anti-tumor effect of crizotinib on multiple MET-amplified NSCLC cells in vitro and in vivo. Mechanistically, crizotinib treatment led to the activation of Ca2+-calcineurin (CaN)-Kinase suppressor of Ras 2 (KSR2) signaling, resulting in Erk1/2 activation and enhanced survival of cancer cells. CsA effectively blocked CaN-KSR2-Erk1/2 signaling, promoting crizotinib-induced apoptosis and G2/M arrest. Similarly, pharmacologic or genetic inhibition of Erk1/2 also enhanced crizotinib-induced growth inhibition in vitro. Xenograft studies further confirmed that CsA or Erk1/2 inhibitor PD98059 enhanced the anti-cancer activity of crizotinib through inhibition of CaN-Erk1/2 axis. The results were also validated by primary human NSCLC cells in vitro and hollow fiber assays in vivo. This study provides preclinical evidences that combination therapy of CsA and crizotinib is a promising approach for targeted treatment of MET-amplified lung cancer patients. FUND: This work was supported by the National Natural Science Foundation of China, the Key Projects of Natural Foundation of Zhejiang Province, the Ten thousand plan youth talent support program of Zhejiang Province, the Zhejiang Natural Sciences Foundation Grant, and the Zhejiang medical innovative discipline construction project-2016.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Fluo-3, suitable for fluorescence, ~70%
Sigma-Aldrich
MISSION® esiRNA, targeting human MAPK3

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.