• Home
  • Search Results
  • TRIM11 cooperates with HSF1 to suppress the anti-tumor effect of proteotoxic stress drugs.

TRIM11 cooperates with HSF1 to suppress the anti-tumor effect of proteotoxic stress drugs.

Cell cycle (Georgetown, Tex.) (2018-12-20)
Liang Chen, Xiaolu Yang
ABSTRACT

Cells mainly rely on stress proteins, such as heat-shock proteins (HSPs), to respond to various proteotoxic conditions. These proteins protect tumor cells and enhance their survive. However, the regulation of stress proteins involved in protein quality control (PQC) is still poorly understood. Here, we report that the expression of TRIM11, an important regulator of PQC, is positively correlated with tumor cell surviaval during the proteotoxic conditions induced by anti-tumor drugs. In addition, HSF1 is required for TRIM11-mediated removal of protein aggregates and resistance of proteotoxic stress. During these processes, TRIM11 interacts with and stabilizes HSF1, increaseing HSF1 levels in the nucleus. These findings identify that TRIM11, through cooperation with HSF1, protects cells against the proteotoxic stress and promotes tumor cell survival.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human HSF1

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.