• Home
  • Search Results
  • Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.

Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.

Journal of contaminant hydrology (2013-03-19)
Jo Philips, Nele Maes, Dirk Springael, Erik Smolders
ABSTRACT

Acidification due to microbial dechlorination of trichloroethene (TCE) can limit the bio-enhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). This study related the dissolution enhancement of a TCE DNAPL to the pH buffer capacity of the medium and the type of electron donor used. In batch systems, dechlorination was optimal at pH7.1-7.5, but was completely inhibited below pH6.2. In addition, dechlorination in batch systems led to a smaller pH decrease at an increasing pH buffer capacity or with the use of formate instead of lactate as electron donor. Subsequently, bio-enhanced TCE DNAPL dissolution was quantified in diffusion-cells with a 5.5 cm central sand layer, separating a TCE DNAPL layer from an aqueous top layer. Three different pH buffer capacities (2.9 mM-17.9 mM MOPS) and lactate or formate as electron donor were applied. In the lactate fed diffusion-cells, the DNAPL dissolution enhancement factor increased from 1.5 to 2.2 with an increase of the pH buffer capacity. In contrast, in the formate fed diffusion-cells, the DNAPL dissolution enhancement factor (2.4±0.3) was unaffected by the pH buffer capacity. Measurement of the pore water pH confirmed that the pH decreased less with an increased pH buffer capacity or with formate instead of lactate as electron donor. These results suggest that the significant impact of acidification on bio-enhanced DNAPL dissolution can be overcome by the amendment of a pH buffer or by applying a non acidifying electron donor like formate.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ammonium formate, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis
Sigma-Aldrich
Ammonium formate, reagent grade, 97%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Trichloroethylene, ACS reagent, ≥99.5%
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Sigma-Aldrich
Ammonium formate, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Sigma-Aldrich
Chlorine, ≥99.5%
Sigma-Aldrich
Sodium formate, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Sodium formate, ACS reagent, ≥99.0%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Potassium formate, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Trichloroethylene, anhydrous, contains 40 ppm diisopropylamine as stabilizer, ≥99%
Sigma-Aldrich
Trichloroethylene, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Sodium formate, reagent grade, 97%
Sigma-Aldrich
Calcium formate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Calcium formate, Standard for quantitative NMR, TraceCERT®
Sigma-Aldrich
Cesium formate, 98%
Sigma-Aldrich
Sodium formate, 99.998% trace metals basis
Sigma-Aldrich
Chlorine, puriss., ≥99.8%
Sigma-Aldrich
Sodium formate-13C, 99 atom % 13C
Sigma-Aldrich
Potassium formate, BioUltra, ≥99.0% (NT)
Supelco
Trichloroethylene solution, certified reference material, 5000 μg/mL in methanol
Sigma-Aldrich
Thallium(I) formate, 97%
Sigma-Aldrich
Basosiv M050, produced by BASF

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.