• Home
  • Search Results
  • Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods.

Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods.

Vaccine (2014-03-04)
Yvonne E Thomassen, Olaf Rubingh, René H Wijffels, Leo A van der Pol, Wilfried A M Bakker

Vero cells were grown adherent to microcarriers (Cytodex 1; 3 g L(-1)) using animal component free media in stirred-tank type bioreactors. Different strategies for media refreshment, daily media replacement (semi-batch), continuous media replacement (perfusion) and recirculation of media, were compared with batch cultivation. Cell densities increased using a feed strategy from 1×10(6) cells mL(-1) during batch cultivation to 1.8, 2.7 and 5.0×10(6) cells mL(-1) during semi-batch, perfusion and recirculation, respectively. The effects of these different cell culture strategies on subsequent poliovirus production were investigated. Increased cell densities allowed up to 3 times higher D-antigen levels when compared with that obtained from batch-wise Vero cell culture. However, the cell specific D-antigen production was lower when cells were infected at higher cell densities. This cell density effect is in good agreement with observations for different cell lines and virus types. From the evaluated alternative culture methods, application of a semi-batch mode of operations allowed the highest cell specific D-antigen production. The increased product yields that can easily be reached using these higher cell density cultivation methods, showed the possibility for better use of bioreactor capacity for the manufacturing of polio vaccines to ultimately reduce vaccine cost per dose. Further, the use of animal-component-free cell- and virus culture media shows opportunities for modernization of human viral vaccine manufacturing.

Product Number
Product Description

Ammonia solution, 7 N in methanol
Ammonia, anhydrous, ≥99.98%
Ammonia solution, 0.4 M in THF
Ammonia solution, 0.4 M in dioxane
Ammonia solution, 4 M in methanol
Ammonia, puriss., anhydrous, ≥99.95%
Ammonia solution, 2.0 M in isopropanol
Ammonia solution, 2.0 M in methanol
Ammonia-14N, 99.99 atom % 14N
Ammonia, puriss., anhydrous, ≥99.9%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.