All Photos(2)




n-Type BBL:PEI ink



Poly(benzimidazobenzophenanthroline) polyethylenimine butanol ink, n-ink-40-1-B


Thermal stability (1h in N2): Up to 350 °C

Quality Level


butanol (solvent)

work function

4.22 eV, UPS analysis


((in plane): Up to 5 S/cm)
((out of plane): Up to 0.1 S/cm)


350 nm±5 nm
600 nm±5 nm


Our n-type BBL:PEI ink is an butanol-based, eco-friendly and halogen-free precursor for high electron conductive and thermally stable (24 hours at 200 °C or 1 hour at 350 °C in N2) thin films. This product has a fixed solid content of 0.2 wt%. This ratio between BBL:PEI (50 % PEI content) results in the highest conductivity. It enables conductivity of up to 8 S/cm and Seebeck coefficient of at least -60 µV/K. Resistant to prolonged air exposure.

It is compatible with large scale deposition methods, such as spray-coating and inkjet. The BBL:PEI ink can be further diluted for casting thin films in various thickness. BBL:PEI thin films were fabricated by spray-casting in air, followed by annealing at 140 °C for 2 h inside a nitrogen-filled glovebox or under vacuum to produce conducting films. The BBL:PEI ink, when processed, forms a high electron conducting n-type film that can be implemented as conducting layer in solar cells, thermoelectric generators, light-emitting diodes, or logic applications:

  • OPV – Charge extracting layer in Organic Solar Cells
  • SuperCapacitors – Negatrode in Organic Supercapacitors
  • OECT – Active material in Organic Electrochemical Transistors
  • OLED – Charge injecting layer in Organic Light Emitting Diodes

Preparation Note

  • Always store the ink in dark and at ambient temperature.
  • Shake the bottle vigorously to ensure an optimal dispersion of the ink prior to processing (by using ultrasonic bath for instance; 100 to 300 W for 30 min).
  • The ink is primarily designed to be spray-casted, with an air-gun or similar spraying methods.
  • The films are stable in air up to 2 days before its thermal activation.
  • Always proceed with the thermal activation of ink under inert environments (vacuum, N2, Ar, etc.) or if properly encapsulated with an air-stable compound.
  • Thermally activated films of our ink films are not affected by chloroform, chlorobenzene, 1,8-diiodooctane, dimethylformamide and dimethyl sulfoxide.

Signal Word


Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Flam. Liq. 3 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

3 - Flammable liquids



Flash Point(F)

95.0 °F

Flash Point(C)

35 °C

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Chi-Yuan Yang et al.
Nature communications, 12(1), 2354-2354 (2021-04-23)
Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service