GF01258657

foil, 0.2m coil, thickness 0.5mm, coil width 49mm, armco« soft ingot 99.8+%

别名:
线性分子式:
Fe
CAS号:
分子量:
55.85
MDL编号:
PubChem化学物质编号:
NACRES:
NA.23

测定

99.8+ %

形式

foil

manufacturer/tradename

Goodfellow 012-586-57

电阻率

9.71 μΩ-cm

尺寸长度 × 宽度 × 厚度

0.2 m × 49 mm × 0.5 mm

bp

2750 °C (lit.)

mp

1535 °C (lit.)

密度

7.86 g/mL at 25 °C (lit.)

SMILES string

[Fe]

InChI

1S/Fe

InChI key

XEEYBQQBJWHFJM-UHFFFAOYSA-N

一般描述

For updated SDS information please visit www.goodfellow.com.

法律信息

Product of Goodfellow

分析证书

原产地证书 (CofO)

Qiu et al.
Physical review letters, 85(7), 1492-1495 (2000-09-06)
FeF (2) films are grown by the reaction of XeF (2) and SeF (6) with iron foil. The growth initially follows the Mott-Cabrera parabolic rate law, indicating that the process is diffusion limited. At a certain film thickness, however, the...
Arnold L Demain et al.
Applied microbiology and biotechnology, 73(1), 55-59 (2006-04-20)
When tetanus toxin is made by fermentation with Clostridium tetani, the traditional source of iron is an insoluble preparation called reduced iron powder. This material removes oxygen from the system by forming FeO(2) (rust). When inoculated in a newly developed...
Jun-Won Jang et al.
Water science and technology : a journal of the International Association on Water Pollution Research, 59(12), 2503-2507 (2009-06-23)
Zero valent iron has been successfully used for the degradation of a wide range of contaminants. However, this reaction of using ZVI particle produces a large quantity of iron sludge. To solve the problem, we report the synthesis of self-organized...
Thomas A Russo et al.
Infection and immunity, 82(6), 2356-2367 (2014-03-26)
Hypervirulent (hypermucoviscous) Klebsiella pneumoniae (hvKP) strains are an emerging variant of "classical" K. pneumoniae (cKP) that cause organ and life-threatening infection in healthy individuals. An understanding of hvKP-specific virulence mechanisms that enabled evolution from cKP is limited. Observations by our...
Laura M van Staalduinen et al.
Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5171-5176 (2014-04-08)
The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen...

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门