Merck
  • Home
  • Search Results
  • Perspectives of disproportionation driven superconductivity in strongly correlated 3d compounds.

Perspectives of disproportionation driven superconductivity in strongly correlated 3d compounds.

Journal of physics. Condensed matter : an Institute of Physics journal (2013-02-01)
A S Moskvin
ABSTRACT

Disproportionation in 3d compounds can give rise to an unconventional electron-hole Bose liquid with a very rich phase diagram, from a Bose metal, to a charge ordering insulator and an inhomogeneous Bose-superfluid. Optimal conditions for disproportionation driven high-T(c) superconductivity are shown to be realized only for several Jahn-Teller d(n) configurations that permit the formation of well defined local composite bosons. These are the high-spin d(4), low-spin d(7), and d(9) configurations given the octahedral crystal field, and the d(1), high-spin d(6) configurations given the tetrahedral crystal field. The disproportionation reaction has a peculiar 'anti-Jahn-Teller' character lifting the bare orbital degeneracy. Superconductivity in the d(4) and d(6) systems at variance with d(1), d(7), and d(9) systems implies unavoidable coexistence of the spin-triplet composite bosons and the magnetic lattice. We argue that unconventional high-T(c) superconductivity, observed in quasi-2d cuprates with tetragonally distorted CuO(6) octahedra and iron-based layered pnictides/chalcogenides with tetrahedrally coordinated Fe(2+) ions presents a key argument to support the fact that the disproportionation scenario is at work in these compounds.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
氧化铜, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
氧化铜, ACS reagent, ≥99.0%
Sigma-Aldrich
氧化铜, powder, 99.99% trace metals basis
Sigma-Aldrich
氧化铜, powder, <10 μm, 98%
Sigma-Aldrich
氧化铜, needles, mixture of CuO and Cu2O, ACS reagent
Sigma-Aldrich
氧化铜, 99.999% trace metals basis
Sigma-Aldrich
铝基氧化铜, 14-30 mesh, extent of labeling: 13 wt. % loading
Sigma-Aldrich
氧化铜, powder, 99.995% trace metals basis