Merck
  • Home
  • Search Results
  • Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model.

Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model.

Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology (2014-07-30)
WonBong Lim, Hongran Choi, Jisun Kim, Sangwoo Kim, SangMi Jeon, Hui Zheng, DoMan Kim, Youngjong Ko, Donghwi Kim, HongMoon Sohn, OkJoon Kim
ABSTRACT

Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief. As during laser treatment it is possible to irradiate only a small area of the surface body or wound and, correspondingly, of a very small volume of the circulating blood, it is necessary to explain how its photomodification can lead to a wide spectrum of therapeutic effects. To establish the experimental model for indirect irradiation, irradiation with 635 nm was performed on immortalized human gingival fibroblasts (IGFs) in the presence of Porphyromonas gingivalis lipopolysaccharides (LPS). The irradiated medium was transferred to non-irradiated IGFs which were compared with direct irradiated IGFs. The protein expressions were assessed by Western blot, and prostaglandin E2 (PGE2 ) was measured using an enzyme-linked immunoassay. Reactive oxygen species (ROS) were measured by DCF-DA; cytokine profiles were assessed using a human inflammation antibody array. Cyclooxygenase-2 (COX-2) protein expression and PGE2 production were significantly increased in the LPS-treated group and decreased in both direct and indirect irradiated IGFs. Unlike direct irradiated IGFs, ROS level in indirect irradiated IGFs was decreased by time-dependent manners. There were significant differences of released granulocyte colony-stimulating factor (G-CSF), regulated on activated normal T-cell expressed and secreted (RANTES), and I-TAC level observed compared with direct and indirect irradiated IGFs. In addition, in the indirect irradiation group, phosphorylations of C-Raf and Erk1/2 increased significantly compared with the direct irradiation group. Thus, we suggest that not only direct exposure with 635 nm light, but also indirect exposure with 635 nm light can inhibit activation of pro-inflammatory mediators and may be clinically useful as an anti-inflammatory tool.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
噻唑蓝, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
噻唑蓝, 98%
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
二甲基亚砜, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
前列腺素E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
前列腺素E2, ≥93% (HPLC), synthetic
Sigma-Aldrich
前列腺素E2, γ-irradiated, powder, BioXtra, suitable for cell culture
Supelco
二甲基亚砜, analytical standard
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Pentostatin, ≥95% (HPLC)
二甲基亚砜, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
前列腺素E2, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
二甲基亚砜, ≥99.6%, ReagentPlus®