Merck
  • Home
  • Search Results
  • Autophagy-mediated stress response in motor neurons after hypothermic spinal cord ischemia in rabbits.

Autophagy-mediated stress response in motor neurons after hypothermic spinal cord ischemia in rabbits.

Journal of vascular surgery (2014-05-14)
Satoshi Fujita, Masahiro Sakurai, Hironori Baba, Koji Abe, Ryuji Tominaga
ABSTRACT

The development of spinal cord injury is believed to be related to the vulnerability of spinal motor neurons to ischemia. However, the mechanisms underlying this vulnerability have not been fully investigated. Previously, we reported that spinal motor neurons are lost likely due to autophagy and that local hypothermia prevents such spinal motor neuron death. Therefore, we investigated the role of autophagy in normothermic and hypothermic spinal cord ischemia using an immunohistochemical analysis of Beclin 1 (BCLN1; B-cell leukemia 2 protein [Bcl-2] interacting protein), Bcl-2, and γ-aminobutyric acid type-A receptor-associated protein (GABARAP), which are considered autophagy-related proteins. We used rabbit normothermic and hypothermic transient spinal cord ischemia models using a balloon catheter. Neurologic function was assessed according to the Johnson score, and the spinal cord was removed at 8 hours and 1, 2, and 7 days after reperfusion, and morphologic changes were examined using hematoxylin and eosin staining. A Western blot analysis and histochemical study of BCLN1, Bcl-2, and GABARAP, and double-labeled fluorescent immunocytochemical studies were performed. There were significant differences in the physiologic function between the normothermic model and hypothermic model after the procedure (P < .05). In the normothermic model, most of the motor neurons were selectively lost at 7 days of reperfusion (P < .001 compared with the sham group), and they were preserved in the hypothermic model (P = .574 compared with the sham group). The Western blot analysis revealed that the sustained expression of the autophagy markers, BCLN1 and GABARAP, was observed (P < .001 compared with the sham group) and was associated with neuronal cell death in normothermic ischemic conditions. In hypothermic ischemic conditions, the autophagy inhibitory protein Bcl-2 was powerfully induced (P < .001 compared with the sham group) and was associated with blunted expression of BCLN1 and GABARAP and neuronal cell survival. The double-label fluorescent immunocytochemical study revealed that immunoreactivitiy for BCLN1, Bcl-2, and GABARAP was induced in the same motor neurons. These data suggest that the prolonged induction of autophagy might be a potential factor responsible for delayed motor neuron death, and the induction of the autophagy inhibitory protein Bcl-2 using hypothermia might limit autophagy and protect against delayed motor neuron death.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
甘氨酸, suitable for electrophoresis, ≥99%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
甘氨酸, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
甘氨酸, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
甘氨酸, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
甘氨酸, ACS reagent, ≥98.5%
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
SAFC
甘氨酸
Sigma-Aldrich
甘氨酸, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)